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Preface

Constraints are a natural means of knowledge representation. This generality
underpins the success with which constraint programming has been applied to a
wide variety of disciplines in academia and industry such as production planning,
communication networks, robotics, and bioinformatics.

This volume contains the extended and reviewed version of a selection of
papers presented at the Joint ERCIM/CoLogNET International Workshop on
Constraint Solving and Constraint Logic Programming (CSCLP 2005), which
was held during June 20–22, 2005 in Uppsala, Sweden.

It also contains papers that were submitted in response to the open call that
followed the workshop. The papers in this volume present research results regard-
ing many aspects of constraint solving and constraint logic programming. This
includes global constraints, search and heuristics, implementations of constraint
systems, and a number of applications.

The editors would like to take the opportunity and thank all the authors who
submitted a paper to this volume, as well as the reviewers for their helpful work.

This volume has been made possible thanks to the support of the European
Research Consortium for Informatics and Mathematics (ERCIM), the European
Network on Computational Logic (CoLogNET), the Swedish Institute of Com-
puter Science (SICS), Science Foundation Ireland (Grant No. 00/PI.1/C075),
and the Department of Information Science (DIS) at Uppsala University in
Sweden.

We hope that the present volume is useful for anyone interested in the recent
advances and new trends in constraint programming, constraint solving, problem
modelling, and applications.

March 2006 B. Hnich, M. Carlsson, F. Fages, and F. Rossi
Organizers

CSCLP 2005
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The All Different and Global Cardinality
Constraints on Set, Multiset and Tuple Variables

Claude-Guy Quimper1 and Toby Walsh2

1 School of Computer Science, University of Waterloo, Canada
cquimper@math.uwaterloo.ca

2 NICTA and UNSW, Sydney, Australia
tw@cse.unsw.edu.au

Abstract. We describe how the propagator for the All-Different
constraint can be generalized to prune variables whose domains are not
just simple finite domains. We show, for example, how it can be used
to propagate set variables, multiset variables and variables which repre-
sent tuples of values. We also describe how the propagator for the global
cardinality constraint (which is a generalization of the All-Different
constraint) can be generalized in a similar way. Experiments show that
such propagators can be beneficial in practice, especially when the do-
mains are large.

1 Introduction

Constraint programming has restricted itself largely to finding values for vari-
ables taken from given finite domains. However, we might want to consider vari-
ables whose values have more structure. We might, for instance, want to find a
set of values for a variable [12, 13, 14, 15], a multiset of values for a variable [16],
an ordered tuple of values for a variable, or a string of values for a variable. There
are a number of reasons to want to enrich the type of values taken by a variable.
First, we can reduce the space needed to represent possible domain values. For
example, we can represent the exponential number of subsets for a set variable
with just an upper and lower bound representing possible and definite elements
in the set. Second, we can improve the efficiency of constraint propagators for
such variables by exploiting the structure in the domain. For example, it might
be sufficient to consider each of the possible elements in a set in turn, rather
than the exponential number of subsets. Third, we inherit all the usual benefits
of data abstraction like ease of debugging and code maintenance.

As an example, consider the round robin sports scheduling problem (prob026
in CSPLib). In this problem, we wish to find a game for each slot in the schedule.
Each game is a pair of teams. There are a number of constraints that the sched-
ule needs to satisfy including that all games are different from each other. We
therefore would like a propagator which works on an All-Different constraint
posted on variables whose values are pairs (binary tuples). In this paper, we con-
sider how to implement such constraints efficiently and effectively. We show how
two of the most important constraint propagators, those for the All-Different

B. Hnich et al. (Eds.): CSCLP 2005, LNAI 3978, pp. 1–13, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 C.-G. Quimper and T. Walsh

and the global cardinality constraint (gcc) can be extended to deal with variables
whose values are sets, multisets or tuples.

2 Propagators for the All-Different Constraint

Propagating the All-Different constraint consists of detecting the values in
the variable domains that cannot be part of an assignment satisfying the con-
straint. To design his propagator, Leconte [18] introduced the concept of Hall
set based on Hall’s work [1].

Definition 1. A Hall set is a set H of values such that the number of variables
whose domain is contained in H is equal to the cardinality of H. More formally,
H is a Hall set if and only if |H | = |{xi | dom(xi) ⊆ H}|.

Consider the following example.

Example 1. Let dom(x1) = {3, 4}, dom(x2) = {3, 4}, and dom(x3) = {2, 4, 5}
be three variable domains subject to an All-Different constraint. The set
H = {3, 4} is a Hall set since it contains two elements and the two variable
domains dom(x1) and dom(x2) are contained in H .

In Example 1, variables x1 and x2 must be assigned to values 3 and 4, making
these two values unavailable for other variables. Therefore, value 4 should be
removed from the domain of x3.

To enforce domain consistency, it is necessary and sufficient to detect every
Hall set H and remove its values from the domains that are not fully contained
in H . This is exactly what Régin’s propagator [4] does using matching theory
to detect Hall sets. Leconte [18], Puget [20], López-Ortiz et al. [19] use simpler
ways to detect Hall intervals in order to achieve weaker consistencies.

3 Beyond Integer Variables

A propagator designed for integer variables can be applied to any type of variable
whose domain can be enumerated. For instance, let the following variables be
sets whose domains are expressed by a set of required values and a set of allowed
values.

{} ⊆ S1, S2, S3, S4 ⊆ {1, 2} and {} ⊆ S5, S6 ⊆ {2, 3}

Variable domains can be expanded as follows:

S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈ {{}, {2}, {3}, {2, 3}}

And then by enforcing GAC on the All-Different constraint, we obtain

S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈ {{3}, {2, 3}}
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We can now convert the domains back to their initial representation.

{} ⊆ S1, S2, S3, S4 ⊆ {1, 2} and {3} ⊆ S5, S6 ⊆ {2, 3}

This technique always works but is not tractable in general since variable
domains might have exponential size. For instance, the domain of {} ⊆ Si ⊆
{1, . . . , n} contains 2n elements. The following important lemma allows us to
ignore such variables and focus just on those with “small” domains.

Lemma 1. Let n be the number of variables and let F be a set of variables
whose domains are not contained in any Hall set. Let xi �∈ F be a variable whose
domain contains more than n − |F | values. Then dom(xi) is not contained in
any Hall set.

Proof. The largest Hall set can contain the domain of n − |F | variables and
therefore has at most n − |F | values. If |dom(xi)| > n − |F |, then dom(xi)
cannot be contained in any Hall set. ��

Using Lemma 1, we can iterate through the variables and append to a set F
those whose domain cannot be contained in a Hall set. A propagator for the
All-Different constraint can prune the domains not in F and find all Hall
sets. Values in Hall sets can then be removed from the variable domains in
F . This technique ensures that domains larger than n do not slow down the
propagation. Algorithm 1 exhibits the process for a set of (possibly non-integer)
variables X .

Algorithm 1. All-Different propagator for variables with large domains

F ← ∅
Sort variables such that |dom(xi)| ≥ |dom(xi+1)|
for xi ∈ X do

1 if |dom(xi)| > n − |F | then F ← F ∪ {xi}

2 Expand domains of variables in X − F .
Find values H belonging to a Hall set and propagate the All-Different constraint
on variables X − F .
for xi ∈ F do

dom(xi) ← dom(xi) − H ;

3 Collapse domains of variables in X − F .

To apply our new techniques, three conditions must be satisfied by the rep-
resentation of the variables:

1. Computing the size of the domain must be tractable (Line 1).
2. Domains must be efficiently enumerable (Line 2).
3. Domains must be efficiently computed from an enumeration of values (Line 3).

The next sections describe how different representations of domains for set,
multiset and tuple variables can meet these three conditions.
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4 All-Different on Sets

Several representations of domains have been suggested for set variables. We
show how their cardinality can be computed and their domain enumerated ef-
ficiently. One of the most common representations for a set are the required
elements lb and the allowed elements ub, with any set S satisfying lb ⊆ S ⊆ ub
belongs to the domain [12, 14]. The number of sets in the domain is given by
2|ub−lb|. We can enumerate all these sets simply by enumerating all subsets of
ub − lb and adding them to the elements from lb. A set can be represented as
a binary vector where each element is associated to a bit. A bit equals 1 if its
corresponding element is in the set and equals 0 if its corresponding element is
not in the set. Enumerating all subsets of ub − lb is reduced to the problem of
enumerating all binary vectors between 0 and 2|ub−lb| exclusively which can be
done in O(2|ub−lb|) steps, i.e. O(|dom(Si)|) steps.

In order to exclude from the domain undesired sets, one can also add a car-
dinality variable [3]. The domain of a set variable is therefore expressed by
dom(Si) = {S | lb ⊆ S ⊆ ub, |S| ∈ dom(C)} where C is an integer vari-
able. We assume that C is consistent with lb and ub, i.e. min(C) >= |lb| and
max(C) <= |ub|. The size of the domain is given by Equation 1 where

(
a
b

)
is the

binomial coefficient.

|dom(Si)| =
∑
j∈C

(
|ub− lb|
j − |lb|

)
(1)

The binomial coefficients can efficiently be computed as explained in Chapter
6.1 of [10]. The identity

(
n

k+1

)
= n−k

k+1

(
n
k

)
can be particularly useful to compute

the summation when the domain of C is an interval. The number of steps required
to compute |dom(Si)| is bounded by O(|dom(C)|).

Algorithm 2 enumerates all combinations of t elements chosen from elements
0 to n − 1. Each element i in a combination is mapped to the ith element in
ub− lb. By enumerating all t-combinations for t ∈ dom(C) to which we add the
required elements lb, we enumerate all sets in |dom(Si)|. Algorithm 2 has a time
complexity of O(t +

(
n
t

)
). Since we call it for each t ∈ dom(C), the total time

complexity simplifies to O(max(|ub− lb|, |dom(Si)|)).
Sadler and Gervet [7] suggest adding a lexicographic ordering constraint to the

domain description. This gives more expressiveness to the domain representation
and can eliminate more undesired sets. that We say that S1 < S2 holds if S1
comes before S2 in a lexicographical order. The new domain representation now
involves two lexicographic bounds l and u.

dom(Si) = {S | lb ⊆ S ⊆ ub, |S| = C, l ≤ S ≤ u} (2)

Knuth [8] represents all subsets of a set using a binomial tree like the one in
Figure 1. The empty set is the root of the tree to which we can add elements
by branching to a child. One can list all sets in lexicographical order by visiting
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Algorithm 2. Enumerate the n
t

combinations of t elements between 0 and n − 1.
(Source: Algorithm T, Knuth [8] p.5)

cj ← j − 1, ∀j 1 ≤ j ≤ t

ct+1 ← n

ct+2 ← 0
repeat

visit ct, ct−1, . . . , c1

j ← 1
while cj + 1 = cj+1 do

cj ← j − 1
j ← j + 1

cj ← cj + 1
until j > t

0

0 0 0

0 0 0

0

31

1 1

1

{1, 0} ≤ Si

2

2

Si ≤ {3, 0}

1 ≤ |Si|

|Si| ≤ 2

Fig. 1. Binomial tree representing the domain ∅ ⊆ Si ⊆ {0, 1, 2, 3}, 1 ≤ |Si| ≤ 2, and
{1, 0} ≤ Si ≤ {3, 0}

the tree from left to right with a depth-first-search (DFS). We clearly see that
the lexicographic constraints are orthogonal to the cardinality constraints.

Based on the binomial tree, we compute, level by level, the number of sets
that belong to the domain. Notice that sets at level k have cardinality k. A set
in the variable domain can be encoded with a binary vector of size |ub − lb|
where each bit is associated to a potential element in ub − lb. A bit set to
one indicates the element belongs to the set while a bit set to zero means that
the element does not belong to the set. The number of sets of cardinality k
in the domain is equal to the number of binary vectors with k bits set to one
and that lexicographically lie between l and u. Let [um, . . . , u1] be the binary
representation of the lexicographic upper bound u. Assuming

(
b
a

)
= 0 for all

negative values of a, function C([um, . . . , u1], k) returns the number of binary
vectors that are lexicographically smaller than or equal to u and that have k
bits set to one.
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C([sm, . . . , s1], k) =
m∑

i=1

si

(
i− 1

k −
∑m

j=i+1 sj

)
+ δ(s, k) (3)

δ([sm, . . . , s1], k) =
{

1 if
∑m

i=1 si = k and s0 = 0
0 otherwise (4)

Lemma 2. Equation 3 is correct.

Proof. We prove correctness by induction on m. For m = 1, Equation 3 holds
with both k = 0 and k = 1. Suppose the equation holds for m, we want to prove
it also holds for m + 1. We have

C([sm+1, . . . , s1], k) = sm+1

(
m

k

)
+ C([sm, . . . , s1], k − sm+1) (5)

If sm+1 = 0, the lexicographic constraint is the same as if we only consider
the m first bits. We therefore have C([sm+1, . . . , s1], k) = C([sm, . . . , s1], k). If
sm+1 = 1, C(s, k) returns

(
m
k

)
which corresponds to the number of vectors with

k bits set to 1 and the (m + 1)th bit set to zero plus C([sm, . . . , s1], k − 1)
which corresponds to the number of vectors with k bits set to 1 including the
(m + 1)th bit. Recursion 5 is therefore correct. Solving this recursion results in
Equation 3. ��

Let a and b be respectively binary vectors associated to the lexicographical
bounds l and u where bits associated to the required elements lb are omitted.
We refer by a−1 to the binary vector that precedes a in the lexicographic order.
The size of the domain is given by the following equation.

|dom(Si)| =
∑
k∈C

(C(b, k)− C(a− 1, k))

Function C can be evaluated in O(|ub− lb|) steps. The size of domain dom(Si)
therefore requires O(|ub − lb||C|) steps to compute. Enumerating can also pro-
ceede level by level without taking into account the required elements lb since
they belong to all sets in the domain. The first set on level k can be obtained
from the lexicographic lower bound l. If |l| �= k, we have to find the first set
l′ of cardinality k that is lexicographically greater than l. If |l| < k, we simply
add to set l the k − |l| smallest elements in ub − lb − l. Suppose |l| > k and
consider the binary representation of l. Let p be the kth heaviest bit set to 1 in
l. We add one to bit p and propagate carries and we set all bits before p to 0.
We obtain a bit vector l′ representing a set with no more than k elements. If
|l′| < k, we add the first k− |l′| elements in ub− lb− l′ to l′ and obtain the first
set of cardinality k.

Once the first set at level k has been computed, subsequent sets can be ob-
tained using Algorithm 2. Obtaining the first set of each level costs O(|dom(C)|
|ub− lb|) and cumulative calls to Algorithm 2 cost O(

∑
i∈dom(C) i + |dom(S)|).

Enumerating the domain therefore requires O(|dom(C)||ub−lb|+|dom(S)|) steps.
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5 All-Different on Tuples

A tuple t is an ordered sequence of n elements that allows multiple occurrences.
Like sets, there are different ways to represent the domain of a tuple. The most
common way is simply by associating an integer variable to each of the tuple
components. A tuple of size n is therefore represented by n integer variables
x1, . . . , xn.

To apply an All-Different constraint to a set of tuples, a common solution
is to create an integer variable t for each tuple. If each component xi ranges from
0 to ci exclusively, we add the following channeling constraint between tuple t
and its components.

t = ((((x1c2 + x2)c3 + x3)c4 + x4) . . .)cn + xn =
n∑
i

⎛⎝xi

n∏
j=i+1

cj

⎞⎠
This technique suffers from either inefficient or ineffective channeling between

variable t and the components xi. Most constraint libraries enforce bound con-
sistency on t. A modification to the domain of xi does not affect t if the bounds
of dom(xi) remain unchanged. Conversely, even if all tuples encoded in dom(t)
have xi �= v, value v will most often not be removed from dom(xi). On the other
hand, enforcing domain consistency typically requires O(nk) steps where k is the
size of the tuple.

To address this issue, one can define a tuple variable whose domain is defined
by the domains of its components.

dom(t) = dom(x1)× . . .× dom(xn)

The size of such a domain is given by the following equation which can be
computed in O(n) steps.

|dom(t)| =
n∏

i=1

|dom(xi)|

The domain of a tuple variable can be enumerated using Algorithm 3. As-
suming the domain of all component variables have the same size, Algorithm 3
runs in O(|dom(t)|) which is optimal.

As Sadler and Gervet [7] did for sets, we can add lexicographical bounds to
tuples in order to better express the values the domain contains. Let l and u be
these lexicographical bounds.

dom(t) = {t | t[i] ∈ dom(xi), l ≤ t ≤ u}

Let idx(v, x) be the number of values smaller than v in the domain of the
integer variable x. More formally, idx(v, x) = |{w ∈ dom(x) | w < v}|. As-
suming idx(v, x) has a running time complexity of O(log(|dom(x)|)), the size of
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Algorithm 3. Enumerate tuples of size n in lexicographical order. (Source: Algo-
rithm T, Knuth [8] p.2).

Initialize first tuple: aj ← min(dom(xj)), ∀j 1 ≤ j ≤ n

repeat
visit (a1, a2, . . . , an)
j ← n

while j > 0 and aj = max(dom(xj)) do
aj ← min(dom(xj))
j ← j − 1

aj ← min({a ∈ dom(xj) | a > aj})
until j = 0

the domain can be evaluated in O(n + log(|dom(t)|)) steps using the following
equation.

|dom(t)| = 1 +
n∑

i=1

⎛⎝(idx(u[i], xi)− idx(l[i], xi))
n∏

j=i+1

|dom(xi)|

⎞⎠
We enumerate the domain of tuple variables with lexicographical bounds sim-

ilarly as tuple variables without lexicographical bounds. We simply initialize
Algorithm 3 with tuple l and stop enumerating when tuple u is reached. In
average case analysis, this operation is performed in O(|dom(t)|) steps.

6 All-Different on Multi-sets

Unlike sets, multi-sets allow multiple occurrences of the same element. We use
occ(v, S) to denote the number of occurrences of element v in multi-set S. An
element v belongs to a multi-set A if and only if its number of occurrences
occ(v, A) is greater than 0. We say that set A is included in set B (A ⊆ B) if
for all element v we have occ(v, A) ≤ occ(v, B). The domain representation of
multi-sets is generally similar to the one for standard sets. We have a multi-set of
essential elements lb and a multi-set of allowed elements ub. Equation 6 gives the
domain of a multi-set and Equation 7 shows how to compute its size in O(|ub|)
steps.

dom(Si) = {S | lb ⊆ S ⊆ ub} (6)

|dom(Si)| =
∏

v∈ub

(occ(v, ub)− occ(v, lb) + 1) (7)

Multisets can be represented by a vector where each component represents the
number of occurrences of an element in the multi-set. Of course, for the multi-set
to be in the domain, this number of occurrences must lie between occ(v, lb) and
occ(v, ub). Therefore a multi-set variable is equivalent to a tuple variable where
the domain of each component is given by the interval [occ(v, lb), occ(v, ub)].
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Enumerating the values in the domain is done as seen in Section 5. The same
approach can be used to introduce lexicographical bounds to multi-sets.

7 Indexing Domain Values

Propagators for the All-Different constraint, like the one proposed by Régin
[4], need to store information about some values appearing in the variable do-
mains. When values are integers, the simplest implementation is to create a table
T where information related to value v is stored in entry T [v]. Algorithm 1 en-
sures that the propagator is called over a maximum of n variables each having
no more than n (possibly distinct) values in their domain. We therefore have a
maximum of n2 values to consider. When these n2 values come from a signif-
icantly greater set of values, table T becomes sparse. In some cases, it might
not even be realistic to consider such a solution. To allow direct memory access
when accessing the information of a value, we need to map the n2 values to an
index in the interval [1, n2].

We suggest to build an indexing tree able to index sets, multi-sets, tuples,
or any other sequential data structure. Each node is associated to a sequence.
The root of the tree is the empty sequence (∅). We append an element to the
current sequence by branching to a child of the current node. There are at most
n2 nodes corresponding to a value in a variable domain. These nodes are labeled
with integers from 1 to n2. Figure 2 shows the indexing tree based on the domain
of 5 set variables.

1

2

2

3
{2, 3} ∈ S5

{2} ∈ S1, S3, S5

{1, 2, 3} ∈ S5

{1, 2} ∈ S1, S2, S3, S5

{1} ∈ S1, S2, S4

3

∅ ∈ S1, S4

Fig. 2. Indexing tree representing the following domains: ∅ ⊆ S1 ⊆ {1, 2}, {1} ⊆ S2 ⊆
{1, 2}, {2} ⊆ S3 ⊆ {1, 2}, ∅ ⊆ S4 ⊆ {1}, {2} ⊆ S5 ⊆ {1, 2, 3}

This simple data structure allows to index and retrieve in O(l) steps the
number associated to a sequence of length l.

8 Global Cardinality Constraint

The global cardinality constraint (gcc) is a generalization of the All-Different
constraint. A value v must be assigned to at least 	v
 variables and at most �v�
variables. Traditionally, the lower capacity 	v
 and the upper capacity �v� are
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given by look-up tables. When working with large domains, these look-up tables
could require too much memory. We therefore assume that the lower and upper
capacity of each value is returned by a function. For instance, the constant
functions 	v
 = 0 and �v� = 1 define the All-Different constraint. In order
to be feasible, the following restrictions apply:

∑
v	v
 ≤ n and

∑
v�v� ≥ n. For

efficiency reasons, we assume that the values L whose lower capacity is positive
are known, i.e. L = {v | 	v
 > 0} is known.

Based on the concept of upper capacity, we give a new definition to a Hall
set.

Hall set [9]. A Hall set H is a set of values such that there are
∑

v∈H�v�
variables whose domains are contained in H ; i.e., H is a Hall set iff |{xi |
dom(xi) ⊆ H}| =

∑
v∈H�v�.

Under gcc, Lemma 1 becomes the following lemma.

Lemma 3. Let F be a set of variables whose domains are not contained in any
Hall set and assume �v� ≥ k holds for all value v. If xi �∈ F is a variable whose
domain contains more than 	n−|F |

k 
 values, then dom(xi) is not contained in any
Hall set.

Proof. The largest Hall set can contain the domain of n − |F | variables and
therefore has at most 	n−|F |

k 
 values. If |dom(xi)| > 	n−|F |
k 
, then dom(xi)

cannot be contained to any Hall set. ��
Following [9], the gcc can be divided into two constraints: the lower bound con-
straint is only concerned with the lower capacities (	v
) and the upper bound
constraint is only concerned with the upper capacities (�v�).

The upper bound constraint is similar to the All-Different constraint.
Up to �v� variables can be assigned to a value v instead of only 1 with the
All-Different constraint. Lemma 3 suggests to modify Line 1 of Algorithm 1
by testing if |dom(xi)| > |X|−|F |

k before inserting variable xi in set F .
The lower bound constraint can easily be handled when variable domains

are large. Consider the set L of values whose lower capacity is positive, i.e.
L = {v | 	v
 > 0}. In order for the lower bound constraint to be satisfiable over
n variables, the cardinality of L must be bounded by n. The values not in L can
be assigned to a variable only if all values v in L have been assigned to at least
	v
 variables. Since all values not in L are symmetric, we can replace them by a
single value p such that 	p
 = 0. We now obtain a problem where each variable
domain is bounded by n + 1 values. We can apply a propagator for the lower
bound constraint on this new problem. Notice that if the lower bound constraint
propagator removes p from a variable domain, it implies by symmetry that all
values not in L should be removed from this variable domain.

9 Experiments

To test the efficiency and effectiveness of these generalizations to the propagator
for the All-Different constraint, we ran a number of experiments on a well
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known problem from design theory. A Latin square is an n × n table where
cells can be colored with n different colors. We use integers between 1 and n
to identify the n colors. A Graeco-Latin square is m Latin squares A1, . . . , Am

such that the tuples 〈A1[i, j], . . . , Am[i, j]〉 are all distinct. The following tables
represent a Graeco-Latin square for n = 4 and m = 2.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

3 4 1 2
1 2 3 4
2 1 4 3
4 3 2 1

We encode the problem using one tuple variable per cell. There is an
All-Different constraint on each row and each column. We add a redundant
0/1-Cardinality-Matrix constraint on each value as suggested by Régin [11].
We use two different encodings for tuples: one is the tuple encoding where each
component is an integer variable, the other is the factored representation. We en-
force bounds consistency on the channeling constraints between the cell variables
and the factored tuple variables. As suggested in [11], our heuristic chooses the
variable with the smallest domain and we break ties on the variable that has the
most bounded variables on its row and column. We use the same implementation
of the All-Different propagator for both tuple encodings.

Table 1 and Figure 3 clearly show that when tuples gets longer, our technique
outperforms the factored representation of tuples. This is mainly due to space
requirements since the factored representation of tuples requires more memory
than the cache can contain.

Table 1. Time to solve a Graeco-Latin square using factored and tuple variables

�
��n

m
3 4 5 6

factored tuple factored tuple factored tuple factored tuple
8 0.48 0.23 0.57 0.35 4.51 0.40 56.48 1.08
9 0.33 0.49 0.31 0.85 1.77 0.94 23.09 2.39
10 0.58 0.91 0.56 1.57 3.44 1.78 52.30 4.36
11 1.05 1.62 1.04 2.97 7.33 3.23 124.95 7.69
12 1.76 2.80 1.79 5.59 13.70 6.04 263.28 13.61
13 2.86 4.69 2.85 9.00 23.96 9.74 493.04 22.80
14 4.37 7.03 4.17 14.34 38.95 15.19 33.79
15 6.88 10.62 6.56 22.18 69.89 23.63 50.23
16 10.11 15.41 9.54 32.52 110.08 34.55 73.60
17 14.21 21.48 13.82 45.35 174.18 47.89 102.98
18 20.41 30.55 19.13 64.87 255.76 68.46 146.21
19 28.28 42.12 25.01 91.45 364.58 95.99 204.45
20 38.31 56.10 34.35 122.30 540.06 136.43 274.29
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Fig. 3. Time in seconds to solve a Graeco-Latin square with m different square sizes.
The data is extracted from Table 1. We see that for m ≥ 5, the component encoding
offers a better performance than the factored encoding.

10 Conclusions

We have described how Régin’s propagator for the All-Different constraint
can be generalized to prune variables whose domains are not just simple finite
domains. In particular, we described how it can be used to propagate set vari-
ables, multiset variables and variables which represent tuples of values. We also
described how the propagator for the global cardinality constraint can be gen-
eralized in a similar way. Experiments showed that such propagators can be
beneficial in practice, especially when the domains are large. Many other global
constraints still remain to be generalized to deal with other variable types than
simple integer domains.
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Abstract. We give an efficiently executable specification of the global
constraint of lexicographic order in the Constraint Handling Rules
(CHR) language. In contrast to previous approaches, the implementa-
tion is short and concise without giving up on the best known worst case
time complexity. It is incremental and concurrent by nature of CHR. It is
provably correct and confluent. It is independent of the underlying con-
straint system, and therefore not restricted to finite domains. We have
found a direct recursive decomposition of the problem. We also show
completeness of constraint propagation, i.e. that all possible logical con-
sequences of the constraint are generated by the implementation. Finally,
we report about some practical implementation experiments.

1 Introduction

Lexicographic orderings are common in everyday life as the alphabetical order
used in dictionaries and listings (e.g., ’zappa’ comes before ’zilch’). In computer
science, lexicographic orders also play a central role in termination analysis, for
example for rewrite systems [3]. In constraint programming, these orders have
recently raised interest because of their use in symmetry breaking (e.g. [14]) and
earlier in modelling preferences among solutions (e.g. [7]).

A natural question to ask is whether lexicographic orders can be implemented
as constraints and what would be appropriate propagation algorithms. There are
two approaches to this problem, starting with [8] and [6]. Both consider the case
of finite domain constraints and (hyper/generalized) arc consistency algorithms,
while our work is independent of the underlying constraint system and achieves
complete constraint progagation as well. All approaches, including ours, yield
algorithms with a worst-case time complexity that is linear in the size of the
lexicographic ordering constraint.

The algorithms and their derivation are quite different, however. In [8] an
algorithm based on two pointers that move along the elements of the sequences
to be lexicographically ordered is given. The algorithm’s description consists of
five procedures with 45 lines of pseudo-code. In [6], a case analysis of the lex-
icographic order constraints yields 7 cases to distinguish, these are translated
into a finite automaton that is then made incremental. The pseudo-code of the
algorithm has 42 lines [5]. The manual derivation of the algorithm is made semi-
automatic in a subsequent paper [4], that can deal with an impressive range

B. Hnich et al. (Eds.): CSCLP 2005, LNAI 3978, pp. 14–28, 2006.
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of global constraints over sequences. The pseudo-code of a simple constraint
checker is converted by hand into a corresponding automaton code (16 lines)
that is automatically translated into automata constraints that allow incremen-
tal execution of the automaton and so enforce arc consistency. Note that the
automaton code is interpreted at run-time.

We summarize that these approaches are based on imperative pseudo-code
that seems either lengthy or requires subsequent translation into a different
formalism. Their specifications seem hard to analyse and are not directly exe-
cutable. In contrast, we give a short and concise executable specification in the
Constraint Handling Rules (CHR) language that consists of 6 rules that derive
from three cases. The problem is solved by recursive decomposition, no addi-
tional constraints need to be defined. The implementation is incremental and
concurrent by nature of CHR. It is independent of the underlying constraint
system, and therefore not restricted to finite domains. Its CHR rules can be
analysed, for example we will show their confluence using a confluence checker,
and prove their logical correctness. We derive worst-case time complexity that
is parameterized by the cost of handling built-in constraints. We also show that
the rules are complete, that they propagate as much information (constraints)
as possible.

CHR [9, 13, 16] is a concurrent committed-choice constraint logic program-
ming language consisting of guarded rules that transform multi-sets of con-
straints (atomic formulae) into simpler ones until they are solved. CHR was
initially developed for writing constraint solvers, but has matured into a general-
purpose concurrent constraint language over the last decade. Its main features
are a kind of multi-set rewriting combined with propagation rules. The clean
logical semantics of CHR facilitates non-trivial program analysis and transfor-
mation. Implementations of CHR now exist in many Prolog systems, also in
Haskell and Java. Besides constraint solvers, applications of CHR range from
type systems and time tabling to ray tracing and cancer diagnosis.

Overview of the Paper. After introducing CHR, we give our generic implemen-
tation of the global constraint for lexicographic orderings in Section 3. Then, in
separate sections, we discuss confluence, logical correctness, completeness, worst-
case time complexity and some implementation experiments before we conclude.
This paper is a significantly revised and extended version of [12].

2 Preliminaries: Constraint Handling Rules

In this section we give an overview of syntax and semantics for constraint han-
dling rules (CHR) [9, 13, 16]. Readers familiar with CHR can skip this section.

2.1 Syntax of CHR

We distinguish between two different kinds of constraints: built-in (pre-defined)
constraints which are solved by a given constraint solver, and CHR (user-defined)
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constraints which are defined by the rules in a CHR program. This distinction al-
lows one to embed and utilize existing constraint solvers as well as side-effect-free
host language statements. Built-in constraint solvers are considered as black-box
in whose behavior is trusted and that do not need to be modified or inspected.
The solvers for the built-in constraints can be written in CHR itself, giving rise
to a hierarchy of solvers [15].

Definition 1. A CHR program is a finite set of rules. There are two main kinds
of rules:

Simplification rule: Name @ H ⇔ C B
Propagation rule: Name @ H ⇒ C B

Name is an optional, unique identifier of a rule, the head H is a non-empty con-
junction of CHR constraints, the guard C is a conjunction of built-in constraints,
and the body B is a goal. A goal is a conjunction of built-in and CHR constraints.
A trivial guard expression “true ” can be omitted from a rule.

Example 1. For example, let ≤ be a built-in constraint symbols with the usual
meaning. Here is a rule for a CHR constraint max, where max(X,Y,Z) means
that Z is the maximum of X and Y:

max(X,Y,Z)⇔ X≤Y Z =Y.

2.2 Declarative Semantics of CHR

The CHR rules have an immediate logical reading, where the guard implies a
logical equality or implication between the l.h.s. and r.h.s. of a rule.

Definition 2. The logical meaning of a simplification rule is a logical equiva-
lence provided the guard holds.

∀(C → (H ↔ ∃ȳ B)),

where ∀ denotes universal closure as usual and ȳ are the variables that appear
only in the body B.

The logical meaning of a propagation rule is an implication provided the guard
holds

∀(C → (H → ∃ȳ B)).

The logical meaning P of a CHR program P is the conjunction of the logical
meanings of its rules united with a consistent constraint theory CT that defines
the built-in constraint symbols.

Example 2. Recall the rule for max from Example 1. The rule means that
max(X,Y,Z) is logically equivalent to Z=Y if X≤Y:

∀(X≤Y → (max(X, Y, Z) ↔ Z=Y ))
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2.3 Operational Semantics of CHR

At runtime, a CHR program is provided with an initial state and will be executed
until either no more rules are applicable or a contradiction occurs.

The operational semantics of CHR is given by a transition system (Fig. 1).
Let P be a CHR program. We define the transition relation �→ by two compu-
tation steps (transitions), one for each kind of CHR rule. States are goals, i.e.
conjunctions of built-in and CHR constraints. States are also called (constraint)
stores. In the figure, all upper case letters are meta-variables that stand for con-
junctions of constraints. The constraint theory CT defines the semantics of the
built-in constraints. Gbi denotes the built-in constraints of G.

Simplify

If (r@H ⇔ C B) is a fresh variant with variables x̄ of a rule named r in P
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧ G) �→r (B ∧ G ∧ H=H ′ ∧ C)

Propagate

If (r@H ⇒ C B) is a fresh variant with variables x̄ of a rule named r in P
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧ G) �→r (H ′ ∧ B ∧ G ∧ H=H ′ ∧ C)

Fig. 1. Computation Steps of Constraint Handling Rules

Starting from an arbitrary initial goal (state, query, problem), CHR rules are
applied exhaustively, until a fixpoint is reached. A final state (answer, solution)
is one where either no computation step is possible anymore or where the built-in
constraints are inconsistent.

A simplification rule H ⇔ C B replaces instances of the CHR constraints H
by B provided the guard C holds. A propagation rule H ⇒ C B instead adds B
to H . If new constraints arrive, rules are reconsidered for application. Computa-
tion stops if the built-in constraints become inconsistent. Trivial non-termination
of the Propagate computation step is avoided by applying a propagation rule
at most once to the same constraints (see the more concrete semantics in [1]).

In more detail, a rule is applicable, if its head constraints are matched by
constraints in the current goal one-by-one and if, under this matching, the guard
of the rule is logically implied by the built-in constraints in the goal. Any of the
applicable rules can be applied, and the application cannot be undone, it is
committed-choice.

Example 3. Here are some sample computations involving the rule for max:

max(1, 2, M) �→ M=2.
max(A,B,M) ∧ A<B �→ M=B ∧ A<B.
max(A, A, M) �→ M=A.
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3 The Lexicographic Order Constraint Solver

A lexicographic order allows one to compare sequences by pairwise comparing
the elements of the sequences.

Definition 3. Given two sequences l1 and l2 of variables of the same length
n, [x1, . . . , xn] and [y1, . . . , yn]. Then l1 is lexicographically smaller than
or equal to l2, written l1�lexl2, iff either n=0 or x1<y1 or x1=y1 and
[x2, . . . , xn]�lex[y2, . . . , yn].

The corresponding logical specification of the lex constraint thus is:

l1�lexl2 ↔ (l1=[] ∧ l2=[]) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x<y) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x=y ∧ l′1�lexl′2)

In our CHR solver for the lex constraint we will use concrete syntax of Prolog
implementations of CHR. Variables start with upper-case letters, constraint and
function symbols with lower-case letters. Lists are enclosed in square brackets,
with their elements seperated by commata, while after the symbol ‘‘|’’ the
remainder of the list follows as a list. Conjunction ∧ is written as comma ’,’.

Our solver will be independent from the constraint system in which the built-in
constraints (inequalities) are defined. Different list elements can be from different
constraint domains if their inequalities are polymorphic. They can even be a
(differently named) lexicographic constraint provided it is built-in.

The derivation of the following six rules for our lexicographic order constraint
solver is explained in [12]. The solver consists of three pairs of rules, the first
two corresponding to base cases of the recursion (garbage collection), then two
rules performing forward reasoning (recursive traversal and implied inequality),
and finally two for backward reasoning, covering a not so obvious special case
when the lexicographic constraint has a unique solution.

l1 @ [] lex [] <=> true.
l2 @ [X|L1] lex [Y|L2] <=> X<Y | true.
l3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.
l4 @ [X|L1] lex [Y|L2] ==> X=<Y.

l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
l6 @ [X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[_|_] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

The first three rules l1, l2 and l3 are directly derived from the three disjuncts
of the logical specification. The notation [X|L] refers to a list with first element
X and the remainder of the list is the list L. The three rules will apply when the
lists are empty or when the relationship between the leading list elements X and
Y is sufficiently known. The built-in constraints X<Y and X=Y are in the guards,
so they check if the appropriate relationship between the variables holds. When
a rule is tried, the built-in constraint solver has to check if the guard is implied
by the current built-in constraints.
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For example, the three queries [1] lex [2], [X] lex [X], and [X] lex
[Y], X<Y will all reduce to true. For finite domains, consider X in {0,1}, Y
in {2,3}, [X] lex [Y]. Rule l2 asks in the guard if the constraint X<Y holds,
i.e. if it is implied by the current built-in constraints. If the built-in finite domain
solver is strong enough to infer X<Y from X in {0,1}, Y in {2,3}, then rule
l2 is applicable and its application results in X in {0,1}, Y in {2,3}. For
simplicity, we will just use explicit inequalities in our examples.

The propagation rule l4 implements a common consequence of the last two
disjuncts of the logical specification. The built-in inequality constraint appears
in the body of the rule and is thus enforced when the rule is applied.

For example, to the query [R|Rs] lex [T|Ts], R<>T only the propagation
rule is applicable and adds R=<T. This results in [R|Rs] lex [T|Ts], R<T after
simplification of the built-in constraints for inequality. Now rule l2 is applicable,
the lex-constraint is removed and the final answer is the remaining R<T.

Rule l5 deals with the special case where the elements of the second pair of the
sequence are related by a strict inequality in the wrong way such that the only
(way to a) solution is to enforce a strict inequality on the first two elements.
Note that rules l4 and l5 are the only ones that directly impose a built-in
constraint. Rule l6 uses double recursion, but note that the first recursive lex
constraint has a fixed, small list length. The rule deals with the case where the
wrong inequality treated in l5 is further down the lists. The additional condition
L1=[ | ] in the guard of rule l6 avoids non-termination in case L1=[].

To see how rules l5 and l6 work together, consider the query [R1,R2,R3] lex
[T1,T2,T3], R2>=T2, R3>T3. Since R2>=T2, rule l6 is applicable, and leads to
R2>=T2, R3>T3, [R1,R2] lex [T1,T2], [R1,R3] lex [T1,T3]. Now rule l5
can be applied to the second lex constraint, and we arrive at R2>=T2, R3>T3,
[R1,R2] lex [T1,T2], R1<T1. Because now R1<T1 is enforced, rule l2 removes
the remaining lex constraint and the final answer is R2>=T2, R3>T3, R1<T1.

4 Confluence

Typically, CHR programs for constraint solving are well-behaved, i.e. terminat-
ing and confluent. Confluence means that the result of a computation is inde-
pendent from the order in which rules are applied to the constraints. This also
implies that the order of constraints in a goal does not matter. Once termina-
tion has been established [10], there is a decidable, sufficient and necessary test
for confluence [1, 2]. In the latter papers it is also shown that confluent CHR
programs have a consistent logical reading.

Definition 4. A CHR program is confluent if for all computation states
S, S1, S2: If S �→∗ S1 and S �→∗ S2 then there exist states T1 and T2 such
that S1 �→∗ T1 and S2 �→∗ T2 and T1 and T2 are identical up to renaming of
local variables and logical equivalence of built-in constraints.

For checking confluence, one takes copies (with fresh variables) of two rules (not
necessarily different) from the program. The heads of the rules are overlapped
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by equating at least one head constraint from one rule with one from the other
rule. For each overlap, one considers the two states resulting from applying one
or the other rule. These two states form a so-called critical pair. One tries to
join the states in the critical pair by finding two computations starting from the
states that reach a common state. If a critical pair is not joinable, one has found
a counterexample for confluence of the program.

We used and improved the confluence checker mentioned in [11] to check
confluence of the lex constraint. The six rules for the lexicographic order
constraint are confluent, the program code and its results are available at:
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/conflexico.pl

The rule l1 cannot give rise to any critical pair. It does not overlap with any
other rule, since it is the only one dealing with empty lists. The rules l2 and
l3 are mutually exclusive. There are overlaps between all the remaining pairs of
rules. If rule l2 or rule l4 is dropped, the solver becomes non-confluent, while
the other rules can be dropped without hurting confluence.

Example 4. Consider the overlap between the rules

l3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.
l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.

which is [X,U|L1] lex [Y,V|L2], U>V, X=Y and which leads to the following
confluence check:

[X, U|L1] lex [Y, V|L2], X=Y, U>V

l3

���������������������
l5

�������������������

X=Y, U>V, [U|L1] lex [V|L2]

l4, built-in
�����������������������

X=Y, U>V, X < Y

built-in���������������������

false

Using the first rule, we arrive at X=Y, U>V, [U|L1] lex [V|L2]. Using the
second rule, we arrive at X=Y, U>V, X<Y. These two states form the critical pair.
The propagation rule l4 is applicable to the first state X=Y, U>V, [U|L1] lex
[V|L2] and leads to X=Y, U>V, [U|L1] lex [V|L2], U=<V, which fails due to
the contradicting constraints on U and V. The second state immediately fails due
to the contradicting constraints on X and Y. Hence, this critical pair is joinable,
in both cases we finally fail (independent of the order of rule applications).

Example 5. Another confluence check involves the rules l5 and l6.

l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
l6 @ [X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[_|_] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].
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Their overlap is

[X,U|L1] lex [Y,V|L2], U>V, L1=[ | ].

The resulting critical pair is

U>V, L1=[_|_], X<Y vs.
U>V, L1=[_|_], [X,U] lex [Y,V], [X|L1] lex [Y|L2].

The first state of the critical pair is already a final state, in the second one,
rule l5 can be applied to the first lex constraint resulting in U>V, L1=[ | ],
X<Y, [X|L1] lex [Y|L2]. Now, since X<Y, rule l2 can be applied to remove
the remaining lex constraint, the two states of the critical pair are joinable.

5 Logical Correctness

CHR programs can be formally verified on the basis of their logical reading.
Recall that the logical meaning of a CHR program is the logical meaning of its
rules united with the constraint theory CT for the built-in constraints.

Definition 5. Let P be the logical meaning of a CHR program P . Let S be a
logical specification for P , i.e. a consistent theory for the CHR constraints in P .
Then program P is logically correct with respect to specification S iff

S ∪CT |= P .

The logical reading of the six rules for the lexicographic order constraint solver
is as follows.

([] �lex [])
X<Y → ([X |L1] �lex [Y |L2])
X=Y → ([X |L1] �lex [Y |L2] ↔ L1�lexL2)

([X |L1] �lex [Y |L2] → X≤Y )
U>V → ([X, U |L1] �lex [Y, V |L2] ↔ X<Y )

(U≥V ∧ L1=[ | ]) → ([X, U |L1] �lex [Y, V |L2] ↔
([X, U ]�lex[Y, V ] ∧ [X |L1]�lex[Y |L2]))

For logical correctness, we have to show that these formulas are logical con-
sequences of the logical specification given by

l1�lexl2 ↔ (l1=[] ∧ l2=[]) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x<y) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x=y ∧ l′1�lexl′2)

For example, it is easy to see that the logical reading of propagation rule l4
is a common consequence of the last two disjuncts of the specification,

(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x<y) ∨ (l1=[x|l′1] ∧ l2=[y|l′2] ∧ x=y ∧ l′1�lexl′2) →

l1=[x|l′1] ∧ l2=[y|l′2] ∧ x≤y.
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Proof for Rule l6. As a more involved example, we prove that the logical reading
of propagation rule l6 is a logical consequence of the specification. From the
specification it follows

[X |L1]�lex[Y |L2] ↔ (X<Y ∨ X=Y ∧ L1�lexL2)

For the rule l6, we will actually prove a slightly stronger result by remov-
ing L1=[ | ] from the precondition (the condition was introduced to ensure
termination). Instead of C → (H ↔ B) we use the logically equivalent
(H ∧ C) ↔ (C ∧B)).

To show the equivalence of the l.h.s. and r.h.s. of the formula, we will now
replace the lex constraints in the logical reading of the rule according to the
specification, distribute conjunction over disjunction and simplify by removing
unsatisfiable disjuncts.

The l.h.s. of the rule, [X, U |L1]�lex[Y, V |L2] ∧ U≥V , becomes

U≥V ∧ (X<Y ∨ X=Y ∧ U<V ∨ X=Y ∧ U=V ∧ L1�lexL2) ↔
(U≥V ∧X<Y ∨ X=Y ∧ U=V ∧ L1�lexL2)

The r.h.s. U≥V ∧ [X, U ]�lex[Y, V ] ∧ [X |L1]�lex[Y |L2] becomes

U≥V ∧(X<Y ∨ X=Y ∧U<V ∨ X=Y ∧U=V )∧(X<Y ∨ X=Y ∧L1�lexL2) ↔
U≥V ∧(U≥V ∧X<Y ∨ X=Y ∧U=V )∧(U≥V ∧X<Y ∨ U≥V ∧X=Y ∧L1�lexL2)
↔ (U≥V ∧X<Y ∨ X=Y ∧ U=V ∧ L1�lexL2)

Both sides, l.h.s. and r.h.s., are equivalent.

6 Worst-Case Time Complexity

We would like to give a complexity result that is independent from the constraint
system in which the built-in constraints (inequalities) are defined. The reason is
that most constraint systems, such as Booleans, finite domains, and linear poly-
nomials, admit these inequalities, but the typical algorithms used (e.g. arc and
path consistency, simplex) have different time complexities and achieve different
degrees of completeness (local or global). We therefore give our complexity re-
sult in the number of atomic built-in constraints that are checked and imposed,
respectively.

Lemma 1. For the rules of the lex constraint, the number of checks and addi-
tions of built-in constraints is proportional to the number of rule applications.

Proof. Head matching can be done in constant time, guards contain at most one
built-in inequality constraint to check, and rule bodies directly impose at most
one built-in inequality constraint.

We show now that an upper bound on the number of rule applications r depends
on the list lengths only. We treat lex constraints with list arguments up to two
elements separately, because they play a special role in rule l6.
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Lemma 2. The number of checks and additions of built-in inequality con-
straints is linear in the length of the list.

Proof. By Lemma 1, it suffices to consider the number of rule applications. We
use the following recurrence equations generated from the rules of the lex con-
straint solver. The number of rule applications involving a list of some given
length is computed as follows in the equations below: We charge 1 (unit) cost
for applying one of the applicable rules and add the number of rule applications
caused by the body of the respective rule. The unit costs are represented by
constants l1 to l6 to indicate which rule is applied. From all the potential rule
applications, the maximum is taken. Since the propagation rule is always ap-
plicable to non-empty lists, its cost is added outside of the maximum expression.

l1 = l2 = l3 = l4 = l5 = l6 = 1
r(0) = l1 = 1
r(1) = max(l2, l3+r(0), l5)+l4 = 3
r(2) = max(l2, l3+r(1), l5)+l4 = 5

...
r(n) = max(l2, l3+r(n−1), l5, l6+r(2)+r(n−1))+l4 = 7+r(n−1) < 7n−8

To empty lists, only the rule l1 is applicable. To lists with one or two elements,
the rules l2 up to l5 are applicable, but not rule l6. The propagation rule l4
can be applied at most once to each lex constraint. The recursive rules l3 and
l6 dominate the costs.

For lists of length n less than or equal to 2, the number of rule applications
is bounded by a constant (at most 5). For lists of length greater than 2, the
number of rule applications is linear in the length of the list.

For the overall complexity, we should not forget about waking: If a variable of a
pending lex constraint gets more constrained by a built-in constraint, the lex
constraint will be woken. Then the results hold even if the built-in constraints are
imposed incrementally, as is standard in constraint programming applications.

Theorem 1. The overall worst case time complexity is linear modulo the cost
of handling the built-in constraints. At most O(n + w) built-in constraints are
checked, imposed or woken where n is the list length and w is the number of
wake (propagation) events caused by the built-in constraint solver.

Proof. The result follows from Lemma 2 and the following observation: If a
CHR constraint is woken, it’s rules will be re-checked for applicability. If a rule is
applicable, the cost of the continuation of the computation on the lex constraint
has already been accounted for in the above calculations. But what is the cost
of waking lex in vain, i.e. if no rule turns out to be applicable? Then a constant
number of head matchings and guard checks has been performed if rules are
tried.
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7 Completeness

In this section we discuss completeness of the constraint solver for the lexico-
graphic order constraint, i.e. if it produces all built-in constraints, i.e. inequali-
ties, that logically follows from the lex constraint and some given inequalities.

We already know that the solver is correct and confluent. Thus it cannot
propagate incorrect conctraints and starting from a given goal it will always
propagate the same constraints, no matter which of the applicable rules are ap-
plied. Thus what is left to show for completeness is that all possible propagations
are performed, not just a few.

Of course, also the completeness result is relative to the built-in constraint
solver. In particular, if its entailment check is too weak to detect all cases where
guard inequalities are implied, the lex constraint solver will also become incom-
plete. This is the case for finite domains, since the underlying arc consistency
algorithm only provides local completeness.

Definition 6. A solution of a lexicographic order constraint [x1, . . . , xn] �lex

[y1, . . . , yn] is of the form

x1=y1 ∧ x2=y2 ∧ . . . ∧ xi−1=yi−1[∧xi<yi] (1 ≤ i ≤ n+1),

where xi<yi is dropped from the conjunction if i = n+1. We describe a solution
to lex by an expression (=)i−1[<] and we identify it by the position i of the strict
inequality <. The resulting sequence of inequalities is meant to hold between the
respective pairs of variables from the two lists of the lex constraint. [e] means
that expression e is dropped if its position in the sequence is greater than n. An
expression e0 is also dropped.

We argue for completeness based on the following observations:

– There can be at most n + 1 solutions to a given lex constraint over lists of
length n.

– The disjunction of all solutions of a lex constraint is logically equivalent to
the constraint.

– Inequality constraints can be added to a lex constraint so that any subset
of solutions is possible:
• Imposing xi < yi or xi �= yi means there can be a solution at position i,

but not at any greater position, since equality is not possible anymore
at position i.

• Imposing xi = yi or xi ≥ yi means there cannot be a solution at position
i, but possibly at greater positions.

• Imposing xi ≤ yi means there can be a solution at position i or any
greater position.

• Imposing xi > yi means there cannot be a solution at position i or any
greater position.

– Hence the smallest position that admits a solution is the first position i that
admits < (i.e. <, ≤, �=, true) or where i=n+1, provided all previous positions
admitted = but not < (i.e. =, ≥). If there is no such smallest position, then
there is no solution.
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Based on these observations, we distinguish two kinds of propagation.

Forward Propagation. The new inequalities that we can propagate from a
disjunction of the solutions of a given lex constraint together with some
inequalities, i.e. all those built-in constraints that are implied, that must
hold no matter which disjunct (solution) is chosen, are simply and only
(=)i−1[≤], where i is the first, smallest position of a solution.

Thus a complete implementation has to turn leading ≥ inequalities into
equalities =, proceed over = and impose ≤ on the first remaining other
inequality. In our constraint solver implementation this is achieved by the
propagation rule l4 that imposes ≤ on any current first position and the
recursive simplification rule l3 that removes leading =.

Backward Propagation. A special case arises if there is exactly one solution,
in that case obviously the last inequality that we have to propagate can be
made strict, (=)i−1[<]. We have exactly one solution if there are no more
solutions after the smallest position that admits a solution. This is the case
if the smallest position is followed by a sequence of zero or more = or ≥
constraints that is ended by >.

This special one-solution case is handled by the simplification rules l5
and l6. Rule l5 covers the case where > holds for the second position, so
< must hold for the first position to ensure a solution. Rule l6 allows one
to reduce the other instances of the special case, where there is an arbitrary
number of = or ≥ constraints between the unique position for a solution and
the > inequality (that could also come from a ≥ being strenghened), to the
situation in rule l5.

Note that the rules l1 and l2 are not needed for completeness of propagation,
simply because they do not propagate anything except the trivial true. But the
two rules are useful for garbage collection and l2 is also needed for confluence.

8 Implementation Experiments

In the literature so far, the lex constraint has only been used for finite domains,
so a comparison is only possible when this constraint system is chosen as built-
in one. While the implementation of [8] seems not to be public domain, the
implementation of [6] is included in the latest Sicstus Prolog releases.

We tested our CHR implementation of lex with the CHR library in Sics-
tus Prolog, while Tom Schrijvers was so kind to test it in SWI Prolog. The
implementations are not incremental at this point, but can be made so by a
tighter coupling. While some readers may be impressed with benchmark tables,
we have omitted them for space reasons. The interested reader can find more
detailed measures that would fit a paper online. The main test file with code
and results for both Prolog implementations is available online (further test files
are mentioned in that file):
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/more/lextest.pl
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For our tests we have used Sicstus 3.11 Prolog with standard settings running
on a Suse Linux PC with medium overall work load. We compiled our code
with the ’compactcode’ option of Sicstus. In the implemented rules, we used
a straightforward coupling between the CHR lex constraint utilizing the chr
library of Sicstus and the finite domain built-in constraints of the Sicstus clpfd
library, where we inspect domains in the guards to perform the necessary checks.

After some initial experiments we found that the propagation rule l4 of the
solver exhibits a non-linear (quadratic) behavior instead of a linear one. One
reason is because every time a lex constraint suspends, all its variables in the
constraint are scanned, while it would only be necessary to scan the first two
variable pairs. We avoided this bottleneck by rewriting the propagation rule into
a guarded simplification rule.

We compared our CHR implementation of lex with the built-in lex chain
constraint [6] of the Sicstus clpfd constraint library. This unary constraint takes
a list of lists of domain variables with finite bounds or integers. The constraint
holds if the lists are in ascending lexicographic order.

We considered lists up to 40000 elements, at around 50000 elements memory
problems occurred. Garbage collection was never performed by the system. In
our experiments, both lexicographic constraints showed a complete propagation
behavior and linear time complexity. The number of rule applications in our
solver is linear in the list length as calculated. Run-times were less than a second
for the CHR lex constraint for simpler test cases. While forward propagation
in CHR was just 3 times slower than built-in lex chain, backward propagation
proved to be 10–20 times slower, possibly because the recursive decomposition
in the CHR solver generates many small lex constraints.

Tom Schrijvers has run the tests in his K.U. Leuven CHR system in an exper-
imental version of SWI Prolog that will be included in the development version
in early 2006. Due to compile-time suspension variable inference in that CHR
implementation, scanning is improved so that the original propagation rule of
the lexicographic constraint solver can be run without run-time penalty in linear
time. In tests with up to 4000 list elements, a linear-time behavior was observed.
Some additional time is spend in garbage collection.

9 Conclusions

Just six CHR rules correctly and efficiently specify and implement an incremental
and concurrent, logical algorithm to maintain consistency of the lexicographic
ordering constraint. Previous approaches presented algorithms for the lexico-
graphic order constraint in pseudo-code that seems hard to analyse or use an
automata formalism that seems hard to re-implement, while our solver program
is simple, short, concise and directly executable. We have found a direct recur-
sive decomposition of the problem that does not need additional constraints and
performs all possible propagations. Moreover, our solver is independent of the
underlying constraint system that provides inequalities between the elements of
the sequences to be compared lexicographically, and therefore our solver is not
restricted to finite domains.
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Our solver consists of three pairs of rules, the first two corresponding to base
cases of the recursion (garbage collection), then two rules performing forward
reasoning (recursive traversal and implied inequality), and finally two for back-
ward reasoning, covering a special case when the lexicographic constraint has
a unique solution. We have proven the rules to be confluent using our semi-
automatic confluence checker. We showed logical correctness, completeness of
constraint propagation and worst-case time complexity linear in the cost of han-
dling the built-in inequality constraints.

We already know that, at least in theory, CHR can implement any algorithm
in best-known space and time complexity [17], and many CHR constraint solvers
including the lex constraint discussed here are practical proof that it is indeed
possible. The remaining constant-factor slow-down observed in the implementa-
tion experiments is the price one currently has to pay for using a very high-level
language as CHR in contrast to a low-level hard-wired implementation. Since
the run-time increase is by a constant factor only, we can hope that compiler
optimization will further close the performance gap.

Future work should consider extensions of the lexicographic ordering con-
straint that can be found in the recent literature, e.g. using it in chains or with
a summation constraint, or simplifying lex constraints for symmetry breaking.
As for the instantiations of the generic constraint solver to specific built-in con-
straint systems, several issues are open: To show that the finite domain instance
maintains generalized arc consistency, to use other underlying built-in constraint
systems such as linear polynomials or temporal constraints, and to give an im-
plementation that does not rely on built-in constraints for inequality, but rather
uses existing CHR solvers. Finally, a hard, challenging question is if and how
rules such as the ones presented here can be derived automatically from inductive
definitions.
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11. T. Frühwirth. Parallelizing union-find in constraint handling rules using conflu-
ence. In M. Gabbrielli and G. G., editors, Logic Programming: 21st International
Conference, ICLP 2005, volume 3668 of Lecture Notes in Computer Science, pages
113–127. Springer, Oct. 2005.
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Abstract. Among, Common and Disjoint are global constraints use-
ful in modelling problems involving resources. We study a number of vari-
ations of these constraints over integer and set variables. We show how
computational complexity can be used to determine whether achieving
the highest level of consistency is tractable. For tractable constraints, we
present a polynomial propagation algorithm and compare it to logical de-
compositions with respect to the amount of constraint propagation. For
intractable cases, we show in many cases that a propagation algorithm
can be adapted from a propagation algorithm of a similar tractable one.

1 Introduction

Global constraints are an essential aspect of constraint programming. See, for
example, [8, 3, 9, 2]. They specify patterns that occur in many problems, and ex-
ploit efficient and effective propagation algorithms to prune search. In problems
involving resources, we often need to constrain the number of variables taking
particular values. For instance, we might want to limit the number of night shifts
assigned to a given worker, to ensure some workers are common between two
shifts, or to prevent any overlap in shifts between workers who dislike each other.
The Among, Common and Disjoint constraints respectively are useful in such
circumstances. The Among, Common and Disjoint constraints are useful in
such circumstances.

The Among constraint was first introduced in CHIP to model resource allo-
cation problems like car sequencing [3]. It counts the number of variables using
values from a given set. A generalization of the Among and AllDifferent con-
straints is the Common constraint [2]. Given two sets of variables, this counts
the number in each set which use values from the other set. A special case of
the Common constraint also introduced in [2] is the Disjoint constraint. This
ensures that no value is common between two sets of variables. We study these
three global constraints as well as seven other variations over integer and set vari-
ables. For each case, we present a polynomial propagation algorithm, and identify
when achieving a higher level of local consistency is intractable. For example,
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rather surprisingly, even though the Disjoint constraint is closely related to
(but somewhat weaker than) the AllDifferent constraint, it is NP-hard to
achieve generalised arc consistency on it.

The rest of the paper is oragnised as follows. We first present the necessary
formal background in Section 2. Then, in Section 3 and Section 4 we study vari-
ous generalisations and specialisations of the Among, Common, and Disjoint
constraints on integer and set variables. Finally, we review related work in
Section 5 before we conclude and present our future plans in Section 6.

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for given subsets of variables. A solution is an assignment of values to the
variables satisfying the constraints. We consider both integer and set variables.
A set variable S can be represented by a lower bound lb(S) which contains the
definite elements and an upper bound ub(S) which contains the definite and po-
tential elements. We use the following notations: X , Y , N , and M (possibly with
subscripts) denote integer variables; S and T (again possibly with subscripts)
denote set variables; S (possibly with a subscript) and K denote sets of inte-
gers; and v and k (possibly with a subscript) denote integer values. We write
D(X) for the domain of a variable X . For integer domains, we write min(X)
and max(X) for the minimum and maximum elements in D(X). Throughout
the paper, we consider constraint satisfaction problems in which a constraint
contains no repeated variables.

Constraint solvers often search in a space of partial assignments enforcing
a local consistency property. A bound support for a constraint C is a partial
assignment which satisfies C and assigns to each integer variable in C a value
between its minimum and maximum, and to each set variable in C a set between
its lower and upper bounds. A bound support in which each integer variable takes
a value in its domain is a hybrid support. If C involves only integer variables,
a hybrid support is a support. A constraint C is bound consistent (BC ) iff for
each integer variable X , min(X) and max(X) belong to a bound support, and
for each set variable S, the values in ub(S) belong to S in at least one bound
support and the values in lb(S) are those from ub(S) that belong to S in all bound
supports. A constraint C is hybrid consistent (HC ) iff for each integer variable
X , every value in D(X) belongs to a hybrid support, and for each set variable S,
the values in ub(S) belong to S in at least one hybrid support and the values in
lb(S) are those from ub(S) that belong to S in all hybrid supports. A constraint
C over integer variables is generalized arc consistent (GAC ) iff for each variable
X , every value in D(X) belongs to a support. If all variables in C are integer
variables, HC is equivalent to GAC, whilst if all variables in C are set variables,
HC is equivalent to BC. Finally, we will compare local consistency properties
applied to (sets of) logically equivalent constraints. A local consistency property
Φ on C1 is strictly stronger than Ψ on C2 iff, given any domains, Φ removes all
values Ψ removes, and sometimes more.
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3 Integer Variables

3.1 Among Constraint

The Among constraint counts the number of variables using values from a given
set [3]. More formally, we have:

Among([X1, .., Xn], [k1, .., km], N) iff N = |{i | ∃j . Xi = kj}|

For instance, we can use this constraint to limit the number of tasks (variables)
assigned to a particular resource (value). Enforcing GAC on such a constraint
is polynomial. Before we give an algorithm to do this, we establish the following
theoretical results.

Lemma 1. Given K = {k1, .., km}, lb = |{i | D(Xi) ⊆ K}|, and ub = n − |{i |
D(Xi) ∩K = ∅}|, a value v ∈ D(N) is GAC for Among iff lb ≤ v ≤ ub.

Proof. At most ub variables in [X1, .., Xn] can take a value from K and lb of
these take values only from K. Hence v is inconsistent if v < lb or v > ub. We
now need to show any value between lb and ub is consistent. We have ub − lb
variables that can take a value from K as well from outside K. A support for
lb ≤ v ≤ ub can be constructed by assigning v variables to a value from K and
ub− v variables to a value from outside K. ��

Lemma 2. Given K = {k1, .., km}, lb = |{i | D(Xi) ⊆ K}|, ub = n − |{i |
D(Xi)∩K = ∅}|, and lb ≤ min(N) ≤ max(N) ≤ ub, a value in D(Xi) may not
be GAC for Among iff lb = min(N) = max(N) or min(N) = max(N) = ub.

Proof. The variables [X1, .., Xn] can be divided into three categories: 1) those
whose domain contains values only from K (lb of them), 2) those whose domain
contains both values from K and from outside (ub − lb of them), and 3) those
whose domain does not intersect with K (n − ub of them). If lb = min(N) =
max(N) then exactly lb variables must take a value from K. These variables can
then only be those of the first category and thus K cannot be in the domains
of the second category. If min(N) = max(N) = ub then exactly ub variables
must take a value from K. These variables can then only be those of the first
and the second category and thus any value v �∈ K cannot be in the domains
of the second category. We now need to show this is the only possibility for
inconsistency. Consider an assignment to the constraint. Due to the variables of
the first and the third category we have lb values from K and n−ub values from
outside K. If lb < max(N) then in the second category we can have at least one
variable assigned to a value from K, the rest assigned to a value outside K and
satisfy the constraint. Similarly, if min(N) < ub then in the second category we
can have at least one variable assigned to a value outside of K, the rest assigned
to a value from K and satisfy the constraint. Hence, all values are consistent
when lb < max(N) or min(N) < ub. ��
We now give an algorithm for the Among constraint.
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Algorithm 1. GAC for Among([X1, .., Xn],K, N).
lb := |{i | D(Xi) ⊆ K}|;1

ub := n − |{i | D(Xi) ∩ K = ∅}|;2

min(N) := max(min(N), lb);3

max(N) := min(max(N), ub);4

if (max(N) < min(N)) then fail;5

if (lb = min(N) = max(N)) then6

foreach Xi . D(Xi) ⊆ K do D(Xi) := D(Xi) \ K;
if (min(N) = max(N) = ub) then7

foreach Xi . D(Xi) ∩ K = ∅ do D(Xi) := D(Xi) ∩ K;

Theorem 1. Algorithm 1 maintains GAC on Among([X1, .., Xn], [k1, .., km], N)
and runs in O(nd) where d is the maximum domain size.

Proof. (Sketch) By Lemmas 1 and 2, the algorithm maintains GAC. Computing
lb and ub is in O(nd). Updating the bounds of N is constant time. Updating
D(Xi) is in O(d). Since there are n variables, pruning Xi’s is in O(nd). Thus,
GAC on Among is in O(nd). ��

The behaviour of the algorithm can be simulated by encoding the Among
constraint using the sum constraint:

Among([X1, . . . , Xn],K, N) iff

∀i ∈ {1, .., n} Bi = 1 ↔ Xi ∈ K ∧
∑

i∈{1,..,n}
Bi = N

where each Bi is a Boolean variable with the domain {0, 1}. In the algorithm,
lb corresponds to the number of Boolean variables assigned 1, and ub to the
number of Boolean variables not assigned 0 (that is, either assigned 1 or having
the domain {0,1}). Lines 3 and 4 of the algorithm can be seen as the propagation
of the sum constraint: min(N) is computed by taking the maximum of min(N)
and the sum of min(Bi) which is equivalent to lb; similarly max(N) is computed
by taking the minimum of max(N) and the sum of max(Bi) which is equivalent
to ub. If lb = min(N) = max(N), all the Booleans having the {0, 1} domain will
be assigned 0, meaning that the associated variables do not take values from K.
Likewise, if min(N) = max(N) = ub, all the Booleans having the {0, 1} domain
will be assigned 1, meaning that the associated variables take values only from
K. Otherwise, no propagation will occur. Consequently, the sum decomposition
maintains GAC.

An alternative method of propagating an Among constraint is using the
global cardinality constraint Gcc [9]:

Among([X1, . . . , Xn], [k1, .., km], N) iff
Gcc([X1, . . . , Xn], [k1, .., km], [O1, .., Om]) ∧∑
i∈{1,..,m}

Oi = N

As shown in [6], this decomposition may not always achieve GAC.
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Even if GAC on Among can be maintained by a simple decomposition, the
presented algorithm is useful when we consider a number of extensions of the
Among constraint. An interesting extension is when we count not the variables
taking some given values but those taking values taken by other variables. This
is useful when, for example, the resources to be used are not initially known. We
consider here two such extensions in which we replace [k1, .., km] either by a set
variable S or by a sequence of variables [Y1, .., Ym]

Among([X1, .., Xn], S, N) holds iff N variables in Xi take values in the set
S. That is, N = |{i | Xi ∈ S}|. Enforcing HC on this constraint is NP-hard in
general.

Theorem 2. Enforcing HC on Among([X1, .., Xn], S, N) is NP-hard.

Proof. We reduce 3-Sat to the problem of deciding if such an Among con-
straint has a satisfying assignment. Finding hybrid support is therefore NP-
hard. Consider a formula ϕ with n variables (labelled from 1 to n) and m
clauses. Let k be m + n + 1. To construct the Among constraint, we create
2k + 1 variables for each literal i in the formula such that Xi1..Xik ∈ {i},
Xi(k+1)..Xi(2k) ∈ {−i}, and Xi(2k+1) ∈ {i,−i}. We create a variable Yj for each
clause j in ϕ and let Yj ∈ {x,−y, z} where the jth clause in ϕ is x ∨ ¬y ∨ z.
We let N = n(k + 1) + m and {} ⊆ S ⊆ {1,−1, .., n,−n}. The constraint
Among([X11, .., X1(2k+1), .., Xn1, .., Xn(2k+1), Y1, .., Ym], S, N) has a solution iff
ϕ has a satisfying assignment. ♥
In Algorithm 2, we give a propagation algorithm for this Among constraint.
Notice that we assume all values are strictly positive. We highlight the differences
with Algorithm 1. The first modification is to replace each occurrence of K by
either lb(S) or ub(S). As a consequence, instead of a single lower bound and
upper bound on N , we have now two pairs of bounds, one under the hypothesis
that S is fixed to its lower bound (lb[0] and glb[0]), and one under the hypothesis
that S is fixed to its upper bound (lub[0] and ub[0]). Moreover, in loop 1, we
compute the contingent values of lb (resp. ub) when a value v is added to lb(S)
(resp. removed from ub(S)) and store the results in lb[v] (resp. ub[v]). These
arrays are necessary for pruning N (lines 3, 4, 6, 7), when the minimum (resp.
maximum) value of N cannot be achieved with the current lower (resp. upper)
bound of S (conditionals 2 and 5). In this case, we know that at least one of
these values must be added to lb(S) (resp. removed from ub(S)). Therefore the
smallest value lb[v] (resp. greatest value ub[v]) is a valid lower bound (resp. upper
bound) on N . We also use them for pruning S (lines 8 and 9). Finally, we need
to compute lb and ub, as they may have been affected by the pruning on S. This
is done in line 10. The worst case time complexity is unchanged, as loop 1 can
be done in O(nd).

The level of consistency achieved by this propagation algorithm is incompa-
rable to BC. The following example shows that BC is not stronger: X1 ∈ {2, 3},
X2 ∈ {2, 3}, X3 ∈ {1, 2, 3, 4}, lb(S) = ub(S) = {2, 3}, min(N) = max(N) = 2.
The algorithm will prune {2, 3} from X3, whereas a BC algorithm will not do
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Algorithm 2. Propagation for Among([X1, .., Xn], S, N).

lb[0] := |{Xi | D(Xi) ⊆ lb(S)}|;
glb[0] := n − |{Xi | D(Xi) ∩ lb(S) = ∅}|;
ub[0] := n − |{Xi | D(Xi) ∩ ub(S) = ∅}|;
lub[0] := |{Xi | D(Xi) ⊆ ub(S)}|;
foreach v ∈ ub(S) \ lb(s) do1

lb[v] := |{Xi | D(Xi) ⊆ (lb(S) ∪ {v})}|;
ub[v] := n − |{Xi | D(Xi) ∩ (ub(S) \ {v}) = ∅}|;

if glb[0] < min(N) then2

LB := {lb[v] | v ∈ (ub(S) \ lb(S))};3

if (LB = ∅) then min(N) = min(LB);4

else
min(N) := max(min(N), lb[0]);

if lub[0] > max(N) then5

UB := {ub[v] | v ∈ (ub(S) \ lb(S))};6

if (UB = ∅) then max(N) = max(UB);7

else
max(N) := min(max(N),ub[0]);

if (max(N) < min(N)) then fail;
lb(S) := lb(S) ∪ {v | ub[v] < min(N)};8

ub(S) := ub(S) \ {v | lb[v] > max(N)};9

if (min(N) = max(N)) then10

lb := |{i | D(XI) ⊆ lb(S)}|;
ub := |{i | D(XI) ∩ ub(S) = ∅}|;
if (lb = min(N)) then

foreach Xi . D(Xi) ⊆ lb(S) do D(Xi) := D(Xi) \ lb(S);
if (ub = max(N)) then

foreach Xi . D(Xi) ∩ ub(S) = ∅ do D(Xi) := D(Xi) ∩ ub(S);

any pruning. On the other hand, the following example shows that this algorithm
does not enforce BC. Consider X1 ∈ {1, 2}, X2 ∈ {1, 2}, X3 ∈ {3}, X4 ∈ {3},
X5 ∈ {4}, X6 ∈ {4}, X6 ∈ {5}, X8 ∈ {5}, lb(S) = {1, 2}, ub(S) = {1, 2, 3, 4, 5},
N ∈ {5, 6, 7, 8}. The algorithm will not do any pruning whereas a BC algorithm
will prune 5 from N .

We can again use the sum constraint to encode the Among constraint:

Among([X1, .., Xn], S, N) iff

∀i ∈ {1, .., n} Bi = 1 ↔ Xi ∈ S ∧
∑

i∈{1,..,n}
Bi = N

where each Bi is a Boolean variable with the domain {0, 1}. Algorithm 2 is
strictly stronger than such a decomposition. It is easy to see that whenever the
decomposition prunes a value from N , Xi’s, or S, our algorithm also can de-
tect these inconsistencies. However, Algorithm 2 might detect more inconsistent
values than the decomposition. For instance, consider X1 ∈ {1, 2}, X2 ∈ {1, 2},
X3 = 3, X4 = 3, X5 = 4, X6 = 4, lb(S) = {1, 2}, ub(S) = {1, 2, 3, 4}, and N ∈
{2, 3}. Algorithm 2 prunes 3 and 4 from ub(S) but the decomposition does not.
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The level of consistency achieved by this decomposition is also incomparable
to BC. The example which demonstrates the incomparability of Algorithm 2 and
BC also shows that the decomposition is incomparable to BC.

It remains an open question, however, whether BC on such a constraint is
tractable or not.

We now consider the second generalization.Among([X1, .., Xn], [Y1, .., Ym], N)
holds iff N variables in Xi take values in common with Yj . That is, N =
|{i | ∃j . Xi = Yj}|. As before, we cannot expect to enforce GAC on this con-
straint.

Theorem 3. Enforcing GAC on Among([X1, .., Xn], [Y1, .., Ym], N) is NP-hard.

Proof. We again use a transformation from 3-Sat. Consider a formula ϕ with
n variables (labelled from 1 to n) and m clauses. We construct the constraint
Among([Y1, .., Ym], [X1, .., Xn], M) in which Xi represents the variable i and Yj

represents the clause j in ϕ. We let M = m, Xi ∈ {i,−i} and Yj ∈ {x,−y, z}
where the jth clause in ϕ is x∨¬y ∨ z. The constructed Among constraint has
a solution iff ϕ has a model. ♥
To propagate Among([X1, .., Xn], [Y1, .., Ym], N), we can use the following de-
composition:

Among([X1, .., Xn], [Y1, .., Ym], N) iff

Among([X1, .., Xn], S, N) ∧
⋃

j∈{1,..,m}
{Yj} = S

We can therefore use the propagation algorithm proposed for Among([X1,
.., Xn], S, N). However, even if we were able to enforce HC on the decomposition
(which is NP-hard in general to do), we may not make the original constraint
GAC.

Theorem 4. GAC on Among([X1, .., Xn], [Y1, .., Ym], N) is strictly stronger
than HC on the decomposition.

Proof: It is at least as strong. To show the strictness, consider Y1 ∈ {1, 2, 3},
X1 ∈ {1, 2}, X2 ∈ {1, 2, 3}, N = 2. We have {} ⊆ S ⊆ {1, 2, 3}, hence the decom-
position is HC. However, enforcing GAC on Among([X1, X2], [Y1], N) prunes 3
from Y1 and X2. ♥
Again, we still do not know whether BC on such a constraint is tractable or not.

3.2 Common Constraint

A generalization of the Among and AllDifferent constraints introduced in
[2] is the following Common constraint:

Common(N, M, [X1, .., Xn], [Y1, .., Ym]) iff

N = |{i |∃j . Xi = Yj}| ∧M = |{j | ∃i . Xi = Yj}|
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That is, N variables in Xi take values in common with Yj and M variables in
Yj take values in common with Xi. Hence, the AllDifferent constraint is a
special case of the Common constraint in which the Yj enumerate all the values
j in Xi, Yj = {j} and M = n. Not surprisingly, enforcing GAC on Common is
NP-hard in general, as the result immediately follows from the intractability of
the related Among constraint.

Theorem 5. Enforcing GAC on Common is NP-hard.

Proof. Consider the reduction in the proof of Theorem 3. We let N ∈ {1, .., n}.
The constructed Common constraint has a solution iff the original 3-Sat prob-
lem has a model. ♥
As we have a means of propagation for Among([X1, .., Xn], [Y1, .., Ym], N), we
can use it to propagate the Common constraint using the following decomposi-
tion:

Common(N, M, [X1, .., Xn], [Y1, .., Ym]) iff
Among([X1, .., Xn], [Y1, .., Ym], N) ∧
Among([Y1, .., Ym], [X1, .., Xn], M)

In the next theorem, we prove that we might not achieve GAC on Common
even if we do so on Among.

Theorem 6. GAC on Common is strictly stronger than GAC on the decompo-
sition.

Proof: It is at least as strong. To show the strictness, consider N = 2, M = 1,
X1, Y1 ∈ {1, 2}, X2 ∈ {1, 3}, Y2 ∈ {1}, and Y3 ∈ {2, 3}. The decomposition is
GAC. However, enforcing GAC on Common(N, M, [X1, X2], [Y1, Y2, Y3]) prunes
2 from X1, 3 from X2, and 1 from Y1. ♥
Similar to the previous cases, the tractability of BC on such a constraint needs
further investigation.

3.3 Disjoint Constraint

We may require that two sequences of variables be disjoint (i.e. have no value
in common). For instance, we might want the sequence of shifts assigned to one
person to be disjoint from those assigned to someone who dislikes them. The
Disjoint([X1, .., Xn], [Y1, .., Ym]) constraint introduced in [2] is a special case of
the Common constraint where N = M = 0. It ensures Xi �= Yj for any i and j.
Surprisingly, enforcing GAC remains intractable even in this special case.

Theorem 7. Enforcing GAC on Disjoint is NP-hard.

Proof: We again use a transformation from 3-Sat. Consider a formula ϕ with n
variables (labelled from 1 to n) and m clauses. We construct the Disjoint con-
straint in which Xi represents the variable i and Yj represents the clause j in ϕ.
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We let Xi ∈ {i,−i} and Yj ∈ {−x, y,−z} where the jth clause in ϕ is x∨¬y∨z.
The constructed Disjoint constraint has a solution iff ϕ has a model. ♥
An obvious decomposition of the Disjoint constraint is to post an inequality
constraint between every pair of Xi and Yj , for all i ∈ {1, .., n} and for all
j ∈ {1, .., m}. Not surprisingly, the decomposition hinders propagation (other-
wise we would have a polynomial algorithm for a NP-hard problem).

Theorem 8. GAC on Disjoint is strictly stronger than AC on the binary de-
composition.

Proof: It is at least as strong. To show the strictness, consider X1, Y1 ∈ {1, 2},
X2, Y2 ∈ {1, 3}, Y3 ∈ {2, 3}. Then all the inequality constraints are AC. However,
enforcing GAC on Disjoint([X1, X2], [Y1, Y2, Y3]) prunes 2 from X1, 3 from X2,
and 1 from both Y1 and Y2. ♥
This decomposition is useful if we want to maintain BC on Disjoint.

Theorem 9. BC on Disjoint is equivalent to BC on the decomposition.

Proof. It is at least as strong. To show the equivalence, we concentrate on Xi’s,
but the same reasoning applies to Yj ’s. Given Xk where k ∈ {1, .., n}, we show
that for any bound bk of Xk (bk = min(Xk) or bk = max(Xk)) there exists a
bound support containing it. We partition the integers as follows. SX contains
all integers v such that ∃Xi, D(Xi) = {v}, SY contains all integers w such that
∃Yj , D(Yj) = {w}, and T contains the remaining integers. T inherits the total
ordering on the integers. So, we can partition T in two sets T1 and T2 such
that no pair of integers consecutive in T belong both to T1 or both to T2. T1
denotes the one containing bk if bk ∈ T . The four sets SX , SY , T1, T2 all have
empty intersections. Hence, if all Xi can take their value in SX ∪T1 and all Yj in
SY ∪ T2, we have a bound support for (Xk, bk) on the Disjoint constraint. We
have to prove that [min(Xi)..max(Xi)] intersects SX ∪ T1 for any i ∈ {1, .., n}
(and similarly for Yj and SY ∪ T2). Since Xi �= Yj is BC for any j, min(Xi) and
max(Xi) cannot be in SY . If min(Xi) or max(Xi) is in SX or T1, we are done.
Now, if both min(Xi) and max(Xi) are in T2, this means that there is a value
between min(Xi) and max(Xi), which is in T1, by construction of T1 and T2.
As a result, any bound is BC on Disjoint if the decomposition is BC. ♥
From Theorem 9, we deduce that BC can be achieved on Disjoint in polynomial
time. In fact, we can achieve more than BC in polynomial time.

Theorem 10. AC on the binary decomposition is strictly stronger than BC on
Disjoint.

Proof. AC on the decomposition is at least as strong BC on the decompo-
sition which is equivalent to BC on the original constraint. The following ex-
ample shows strictness. Consider X1 ∈ {1, 2, 3} and Y1 ∈ {2}. The constraint
Disjoint([X1], [Y1]) is BC whereas GAC on the decomposition prunes 2 from
X1. ♥
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Algorithm 3. BC for Among([S1, .., Sn],K, N).
InLb := f([lb(S1, .., lb(Sn))], K);1

InUb := f([ub(S1, .., ub(Sn))], K);2

min(N) := max(min(N), InLb);3

max(N) := min(max(N), InUb);4

if min(N) > max(N) then fail;5

if max(N) = InLb then6

foreach Si . lb(Si) ∩ K = ∅ do ub(Si) := ub(Si) \ K;
if min(N) = InUb then7

foreach Si . lb(Si) ∩ K = ∅ ∧ |K ∩ ub(Si)| = 1 do
lb(Si) := lb(Si) ∪ K ∩ ub(Si);

4 Set Variables

Many problems involve finding a set of values (for example, the set of nurses
on a particular shift). It is useful therefore to have global constraints over set
variables [10]. For instance, we might want to count the number of times each
nurse has a shift during the monthly roster where each shift is a set variable
listing the nurses on duty. This could be achieved with a global constraint that
counted the values occurring in a sequence of set variables.

4.1 Among Constraint

We consider an Among constraint over set variables that counts the number of
these variables which contain one of the given values. More formally, we have:

Among([S1, .., Sn], [k1, .., km], N) iff N = |{i | ∃j . kj ∈ Si}|

Enforcing BC on such a constraint is polynomial. We propose an algorithm
to do this where we define the function f([S1, ..,Sn],K) to be |{i | Si ∩K �= ∅}|.

Theorem 11. Algorithm 3 maintains BC on Among([S1, .., Sn],K, N) and
runs in O(nd) where d is the size of the maximum upper bound of the Si .

Proof. Soundness is relatively immediate. N cannot be greater than the number
of variables having kj ’s in their upper bounds or smaller than the number of
variables having kj ’s in their lower bounds. Furthermore, if max(N) is equal
to the number of variables having kj ’s in their lower bound, there is no hope
to satisfy the Among constraint if we use a value kj in another variable. If
min(N) = InUb, then for each Si, if there exists only one element in its upper
bound (but not in its lower bound) which is also in K, then that element has
necessarily to belong to the lower bound of Si as it cannot be covered by another
Sj otherwise min(N) < InUb. Finally, if min(N) > max(N) we necessarily fail.

To show completeness, we need that when we do not fail, the domains returned
are bound consistent. Consider an integer k such that InLb ≤ k ≤ InUb. We can
construct an assignment of Si’s where exactly k of them take a value in K. We
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first assign all Si’s with their lower bound. InLb of the Si’s necessarily contain
some kj since their lower bound overlaps K. For k − InLb variables among the
InUb−InLb variables with some kj in their upper bound but none in their lower
bound, we take some kj from their upper bound to obtain a satisfying assign-
ment with N = k. Since min(N) ≥ InLb and max(N) ≤ InUb (lines 3 and 4),
N is BC. Suppose now a value v in ub(Si). The only case in which v should not
belong to ub(Si) is when v is in the kj ’s, none of the kj ’s appear in lb(Si), and
no more variable can take values in the kj ’s, i.e., InLb = max(N). Then, v will
have been removed from ub(Si) (line 6). In addition, suppose v should belong
to lb(Si). This is the case only if there is no kj in lb(Si), and v is the only value
in ub(Si) appearing in the kj ’s, and InUb = min(N). Then, v will have been
added in lb(Si) (line 7).

Computing the counters InLb and InUb is in O(nd). Updating the bounds
on N is constant time. Deleting values that are not bound consistent in a ub(Si)
or adding a value in lb(Si) is in O(d). Since there are n variables, this phase is
again in O(nd). Bound consistency on Among is in O(nd). ♥
Note we can also add non-empty or cardinality conditions to the Si without
making constraint propagation intractable.

We again consider an extension in which we replace [k1, .., km] by a set vari-
able S. Unlike the previous Among constraint, enforcing BC on Among([S1, ..,
Sn], S, N) is NP-hard in general.

Theorem 12. Enforcing BC on Among([S1, .., Sn], S, N) is NP-hard.

Proof. We reuse the reduction from the proof of Theorem 2 with minor mod-
ifications. We create 2k + 1 set variables for each literal i in the formula such
that Si1..Sik ∈ {i}..{i}, Si(k+1)..Si(2k) ∈ {−i}..{−i}, and Si(2k+1) ∈ {}..{i,−i}.
We create a set variable Tj for each clause j in ϕ and let Tj ∈ {}..{x,−y, z}
where the jth clause in ϕ is x ∨ ¬y ∨ z. We let N = n(k + 1) + m and
{} ⊆ S ⊆ {1,−1, .., n,−n}. The constraint Among([S11, .., S1(2k+1), .., Sn1, ..,
Sn(2k+1), T1, .., Tm], S, N) has a solution iff ϕ has a model. ♥
Note that the constraint remains intractable if the Si are non-empty or
have a fixed cardinality. We can easily modify the reduction by adding distinct
“dummy” values to Si and Tj respectively. We also add these dummy values to
the lower bound of S.

Despite this intractability result, we can easily modify Algorithm 3 to derive
a filtering algorithm for Among([S1, .., Sn], S, N) without changing the com-
plexity. We use the lower bound of S (resp. ub(S)) in the computation of InLb
(resp. InUb). Also, instead of K in line 6 (resp. line 7), we use lb(S) (resp.
ub(S)). Finally, we need to consider the bounds of S. We remove v from ub(S)
if |{i | lb(Si) ⊆ lb(S) ∪ {v}}| > max(N). Similarly, we add v to lb(S) if |{i |
ub(Si)∩ ub(S) \ {v} �= ∅}| < min(N). We can easily extend the soundness proof
of Theorem 11 for this algorithm as well. Such an algorithm does not achieve
BC (otherwise we would have a polynomial algorithm for a NP-hard problem).

Finally, the constraint Among([S1, .., Sn], [T1, .., Tm], N) is very similar to the
previous one since several set variables [T1, . . . , Tm] behave like their union. That
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Algorithm 4. BC for Disjoint([S1, .., Sn], [T1, .., Tm]).
S := i∈{1,..,n}(lb(Si));1

T := i∈{1,..,m}(lb(Ti));2

if S ∩ T = ∅ then fail;3

foreach Si do ub(Si) := ub(Si) \ T ;4

foreach Tj do ub(Tj) := ub(Tj) \ S;5

is, Among([S1, .., Sn], [T1, .., Tm], N) is similar to Among([S1, .., Sn], T, N) with
T =

⋃
j∈{1..m} Tj.

4.2 Common Constraint

We may also want to post a Common constraint on set variables. We have:

Common(N, M, [S1, .., Sn], [T1, .., Tm]) iff

N = |{i | ∃j . Si ∩ Tj �= ∅}| ∧M = |{j | ∃i . Si ∩ Tj �= ∅}|

Enforcing BC on such a constraint is intractable as it is an extension of the
previous Among constraint. We can reduce Among([S1, .., Sn], [T1, .., Tm], N)
to Common(N, M, [S1, .., Sn], [T1, .., Tm]) by setting M to {0, .., m}.

Since we have a means of propagation for Among([S1, .., Sn], [T1, .., Tm], N),
we can use it to propagate the Common constraint by decomposing it into two
such Among constraints. However, such a decomposition hurts propagation.
Consider the set variables S1, S2, S3, T1, T2 and T3 with {i} ⊆ Si ⊆ {i}, N = 1,
{} ⊆ Ti ⊆ {i}, and M = 2. The two Among constraints of the decomposition
are BC while Common is inconsistent.

4.3 Disjoint Constraint

We finally consider Disjoint([S1, .., Sn], [T1, .., Tm]). Unlike GAC on Disjoint
with integer variables, we can maintain BC on Disjoint([S1, .., Sn], [T1, .., Tm])
in polynomial time.

Theorem 13. Algorithm 4 maintains BC on Disjoint([S1, .., Sn], [T1, .., Tm])
and runs in O((n + m)d).

Proof. We first show that the algorithm is sound. If there exists one value which
occurs both in the lower bound of one of Si and in the lower bound of one of
the Tj, then we necessarily fail (Line 3). If a value is consumed by one of the Tj ,
then we cannot satisfy the constraint if this value is allowed to be consumed by
one of the Si (Line 4). Similarly, if a value is consumed by one of the Si, then
we cannot satisfy the constraint if this value is allowed to be consumed by one
of the Tj (Line 5).

To show completeness, we prove that either we fail or we return bound consis-
tent domains. We only consider the Si as the reasoning is analogous for the Tj .
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First, if the lower bounds of the Si do not overlap those of the Tj, then assigning
all Si and Tj to their lower bound is a solution. Thus, the lower bounds are BC.
Now, for each value in the upper bound of each Si, we can construct a satisfying
assignment involving v by assigning all other Si to their lower bounds, Si to
its lower bound plus the element v, and all the Tj to their corresponding lower
bounds as none has v as an element.

If d is the total number of values appearing in the upper bounds of the set
variables, then at worst case the complexity of line 4 is O(nd) and of line 5 is
O(md). Hence, the algorithm runs in O((n + m)d). ♥
Note that if we add a cardinality restriction to the size of the set variables, it
becomes NP-hard to enforce BC on this constraint.

5 Related Work

Among([X1, .., Xn], [k1, .., km], N) was first introduced in CHIP by [3]. A closely
related constraint is the Count constraint [11]. Count([X1, .., Xn], v, op, N)
where op ∈ {≤,≥, <, >, �=, =} holds iff N op |{i | Xi = v}|. The Among con-
straint is more general as it counts the variables taking values from a set whereas
Count counts those taking a given value. The algorithm of Among can easily
be adapted to cover the operations considered in Count.

There are other counting and related constraints for which there are
specialised propagation algorithms such as Gcc [9], NValue [1], Same and
UsedBy [4].

In [6], a wide range of counting and occurrence constraints are specified using
two primitive global constraints, Roots and Range. For instance, the Among
on integer variables constraint is decomposed into a Roots and set cardinality
constraint. Similarly, the Common constraint is decomposed into two Roots,
two Range and two set cardinality constraints. However, Roots and Range
cannot be used to express the Among, Common, and Disjoint constraints on
set variables.

Finally our approach to the study of the computational complexity of rea-
soning with global constraints has been proposed in [5]. In particular, as in [5],
we show how computational complexity can be used to determine when a lesser
level of local consistency should be enforced and when decomposing constraints
will lose pruning.

6 Conclusions

We have studied a number of variations of the Among, Common and Disjoint
constraints over integer and set variables. Such constraints are useful in mod-
elling problems involving resources. Our study shows that whether a global con-
straint is tractable or not can be easily affected by a slight generalization or
specialization of the constraint. However, a propagation algorithm for an in-
tractable constraint can often be adapted from a propagation algorithm of a
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Table 1. Summary of complexity results

Constraint Tractability
Integer Variables
Among([X1, .., Xn], K, N) GAC is in P
Among([X1, .., Xn], S, N) HC is NP-hard
Among([X1, .., Xn], [Y1, .., Ym], N) GAC is NP-hard
Common(N, M, [X1, .., Xn], [Y1, .., Ym]) GAC is NP-hard
Disjoint([X1, .., Xn], [Y1, .., Ym]) GAC is NP-hard, BC is in P
Set Variables
Among([S1, .., Sn], K, N) BC is in P
Among([S1, .., Sn], S, N) BC is NP-hard
Among([S1, .., Sn], [T1, .., Tm], N) BC is NP-hard
Common(N, M, [S1, .., Sn], [T1, .., Tm]) BC is NP-hard
Disjoint([S1, .., Sn], [T1, .., Tm]) BC is in P

similar tractable one. In Table 1, we present a summary of our complexity results.
For integer variables, we propose a polynomial time propagation algorithm for
the Among constraint that achieves GAC. We prove that Among is intractable
when we count the number of variables using values from a set variable or a se-
quence of integer variables. Nevertheless, we propose a polynomial algorithm to
propagate the former and show how this algorithm can be used to propagate the
latter. We also show that the Common constraint is intractable in general, and
this holds even in the special case of the Disjoint constraint when the number
of values in common is zero. The last result is somewhat surprising, since the
Disjoint constraint is related to (and weaker than) the AllDifferent con-
straint. When we demonstrate the intractability of a constraint like Disjoint,
we also present a polynomial method to propagate the constraint. Finally, we
consider Among, Common and Disjoint constraints over set variables rather
than integer variables. We show that most of the results on integer variables hold
for set variables with the exception that the Disjoint constraint now becomes
tractable.

In future work, we will focus on determining whether BC on Among([X1, ..,
Xn], S, N) is tractable or not. Such a result will also help us answer the still
open questions of whether BC on the related Among([X1, .., Xn], [Y1, .., Ym], N)
and Common(N, M, [X1, .., Xn], [Y1, .., Ym]) is tractable or not. We will also im-
plement these constraints and see their value in practice.
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S-581 83 Linköping, Sweden

jotha@mai.liu.se

Abstract. We discuss four variants of the graph colouring problem, and
present algorithms for solving them. The problems are k-Colourability,
Max Ind k-COL, Max Val k-COL, and, finally, Max k-COL, which
is the unweighted case of the Max k-Cut problem. The algorithms are
based on the idea of partitioning the domain of the problems into disjoint
subsets, and then considering all possible instances were the variables are
restricted to values from these partitions. If a pair of variables have been
restricted to different partitions, then the constraint between them is
always satisfied since the only allowed constraint is disequality.

1 Introduction

The graph colouring problem is probably one of the most well-studied graph
problem. While it is conceptually easy to understand— colour the vertices of a
graph such that if there is an edge between two vertices, then they must have
different colours— it is NP-complete for more than two colours [15]. It has been
studied for a long time, and was actually the 12th problem in the list of NP-
complete problems presented in Karp [18]. One reason for studying this problem
is, of course, that it regularly appears as a natural problem in a wide range
of areas, such as register allocation in compiler construction [8], and frequency
assignment in mobile communication [14].

The graph colouring problem is nicely formulated as a constraint satisfaction
problem; it is the (very) restricted CSP in which we only allow the constraint
disequality, i.e. given two vertices of a graph, the only requirement we can have
is that they have different colours if there is an edge between them.

In this paper, we will discuss a number of different versions of the graph
colouring problem. Our results are based on an idea which was first formalised in
Angelsmark & Jonsson [2]. This method, which is called the partitioning method,
works by partitioning the domain of the problem into a number of (disjoint)
subsets, and then solving a number of restricted instances in order to find a
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solution. The idea is of course not restricted to the problems we discuss in this
paper; in [2] it was used to construct an algorithm for #CSP (i.e. the problem
of counting the solutions to a CSP) and it turned out to be very successful when
applied to the problem of counting graph colourings.

Problems where the only allowed constraint is disequality have the property
that once a pair of variables have been restricted to assume values from differ-
ent partitions they cannot be assigned a common value in any solution to this
instance and thus the constraint between them, if there was one, ’disappears.’
Consequently, we can consider those variables that have been assigned the same
partition in isolation, thereby reducing the problem to one with a smaller do-
main. We can also introduce a hierarchy of partitions— the instance arising from
the partition can be partitioned further— and at the bottom level we can apply
an algorithm specialised for solving problems with small domains. Of course, any
improvement in this specialised algorithm will also improve the overall algorithm.

The first problem we look at is the k-colouring problem, where the aim is to
decide if it is possible to colour a given graph using at most k colours. As was
mentioned earlier, this problem is NP-complete for k > 2. Interestingly enough,
for k > 6, the fastest algorithm for this problem is the general, exponential
space algorithm for Chromatic Number; the original version by Lawler [20]
has a running time of O

(
(1 + 3

√
3)n

)
∈ O (2.4423n). This was later improved to

O (2.4151n) by Eppstein [12], and, recently, to O (2.4023n) by Byskov [5].
The algorithm we present for this problem uses polynomial space, and while it

is not faster than the Chromatic Number algorithm, it is faster than the cur-
rently fastest polynomial space algorithm, which is due to Feder & Motwani [13],
and has a running time of O

((
min

(
k/2, 2φk

))n)
, where φk is given by

1
k + 1

k−1∑
i=0

(
1 +

i(
k
2

))
log2(k − i).

Asymptotically, 2φk is bounded from above by k/e, where e ≈ 2.7182 as usual.
In contrast, the algorithm we propose runs O (αn

k ), k > 6, where n is the number
of vertices in the graph and

αk =

⎧⎨⎩
i− 2 + β5 if 2i < k ≤ 2i + 2i−2

i− 1 + β3 if 2i + 2i−2 < k ≤ 2i + 2i−1

i− 1 + β4 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 2, assuming we can solve 3-, 4-, and 5-colourability in O (βn
3 ) ,O (βn

4 ),
and O (βn

5 ) time, respectively. See Table 1 for a comparison. (Throughout the
paper, we will omit polynomial factors in time and space complexities.)

Max Ind (d, 2)-CSP is, basically, the problem of finding a satisfiable subin-
stance of the original problem which contains as many variables as possible (we
let (d, l)-CSP denote a CSP where the domain has size at most d, and the con-
straints have arity l.) A subinstance is here a subset of the variables, together
with the constraints which only involve these variables. (For example, if we have
the variables x, y in the subset, then the constraint R(x, y) would be included,
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Table 1. Comparison between our k-colouring algorithm and that of Feder & Motwani

k = 6 k = 7 k = 8 k = 9 k = 10
F & M [13] 2.8277n 3.2125n 3.5956n 3.9775n 4.3581n

New result 2.3290n 2.7505n 2.7505n 3.1021n 3.1021n

but the constraint R′(x, y, z) would not, since z is not in the subset.) Max Ind
(d, 2)-CSP is, in some sense, dual to the classical Max CSP in that it does not
maximise the number of satisfied constraints, but instead tries to maximise the
number of variables that are assigned values without violating any constraints.

The colouring version of this problem is called the Maximum Induced k-
Colourable Subgraph, or Max Ind k-COL for short. Using the partitioning
method, we arrive at an algorithm which has a running time of O (αn

k ), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + β2 if 2i + 2i−1 < k ≤ 2i+1

with β2 = 1.4460, β3 = 1.7388 and i ≥ 1. We get the values of β2 and β3 are by
applying the Maximum Independent Set algorithm from Robson [21] to the
microstructure of the instances witg domain sizes 2 and 3 (see [4].)

Next, we consider the Max Value problem, which (somewhat simplified) is
the problem of maximising the sum of the variable values. We first construct a
specialised algorithm for the Max Value 3-Colouring problem, which runs
in O (1.6181n) time, and end up with a running time of O (αn

k ), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + 1 if 2i + 2i−1 < k ≤ 2i+1

with β3 = 1.6180 and i ≥ 1, for the general Max Value k-Colouring problem.
For our final problem we consider the Maximum k-Colourable Subgraph,

or Max k-COL, problem. This is also known as the unweighted case of the well-
known Max k-CUT problem. The currently fastest algorithm for this problem
is the O

(
kωn/3

)
time algorithm presented in Williams [22], which utilises expo-

nential space. Here, ω ∈ R is the exponent in matrix multiplication over a ring,
and has been shown to be less than 2.376 [9].

Using cases k = 2 and k = 3 from [22], we apply the partitioning method to
get an algorithm for Max k-COL with a running time of O (αn

k ), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + β2 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 1, assuming we can solve for domain sizes 2 and 3 in O (βn
2 ) and O (βn

3 )
time. The underlying algorithms uses exponential space, and this will also be
the case for our algorithm. However, since we only use the algorithms for k = 2
and k = 3, we only need the space required for these. For larger values of k, this
is considerably less than the O

(
kn/3

)
required by the algorithm from [22].

This result also holds for the counting problem #Max k-COL, by simply
replacing the underlying algorithms with their counting versions.
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2 Preliminaries

A (d, l)-constraint satisfaction problem ((d, l)-CSP) is a triple (X, D, C) where

– X is a finite set of variables,
– D a finite set of domain values, with |D| = d, and
– C is a set of constraints {c1, c2, . . . , ck}.

Each constraint ci ∈ C is a structure R(xi1 , . . . , xij ) where j ≤ l, xi1 , . . . , xij ∈ X
and R ⊆ Dj . A solution to a CSP instances is a function f : X → D s.t. for
each constraint R(xi1 , . . . , xij ) ∈ C, (f(xi1 , . . . , f(xij ))) ∈ R. Given a (d, l)-CSP,
the basic computational problem is to decide whether it has a solution or not—
to determine if it is satisfiable. If the function does not assign values to every
variable, but only a subset of them, it will be referred to as a partial solution,
provided no constraints are violated by these assignments.

The special case (2, 2)-CSP is equivalent to 2-Satisfiability, or 2-SAT. An
instance of 2-SAT, a 2-SAT formula, consists of the conjunction of a set of
clauses, where each clause is the disjunction of (at most) 2 literals. (A literal is
either a variable or its negation.) We will be interested in weighted instances of
2-SAT, and define them as follows:

Definition 1 (Dahllöf et al. [10]). Let Γ be a 2-SAT formula and let L be
the set of all literals for all variables occurring in Γ . Given a weight vector w,
and a solution M to Γ , we define the weight W (M) of M as

W (M) =
∑

{l∈L | l is true in M}
w(l)

Dahllöf et al. [10] presents an algorithm for counting the number of maximum
weighted solutions to 2-SAT instances. This algorithm has a running time of
O (1.2561n), and it can easily be modified to return one of the solutions. We will
denote this modified algorithm 2 -SATw .

A graph G consists of a set V (G) of vertices, and a set E(G) of edges, where
each element of E(G) is an unordered pair of vertices. The size of a graph,
denoted |G| is the number of vertices. The neighbourhood of a vertex v ∈ V (G)
is the set of all vertices adjacent to v, v itself excluded, denoted NG(v); NG(v) =
{w ∈ V (G) | (v, w) ∈ E(G)}. The degree degG(v) of a vertex v is the size of
its neighbourhood, |NG(v)| (note that we do not consider graphs which allow
’self-loops,’ i.e. edges of the form {v, v}.) When G is obvious from the context,
it can be omitted as a subscript. If we pick a subset S of the vertices of a
graph together with the edges between them (but no other edges), then we get
the subgraph of G induced by S, G(S). G(S) has vertex set S and edge set
{(v, u) | v, u ∈ S, (v, u) ∈ E(G)}. If the induced subgraph has empty edge set,
then it forms an independent set.

Definition 2 (Jégou [16]). Given a binary CSP Θ = (X, D, C), i.e. a CSP
with binary constraints, the microstructure of Θ is an undirected graph G defined
as follows:
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1. For each variable x ∈ X, and domain value a ∈ D, there is a vertex x[a] in
G.

2. There is an edge (x[a], y[b]) ∈ E(G) iff (a, b) violates the constraint between
x and y, i.e. if xRy and (a, b) �∈ R.

We assume there is exactly one constraint between any pair of variables; any
variables without explicit constraints are assumed to be constrained by the uni-
versal constraint which allows all values.

For readers familiar with the original formulation, the graph given by this con-
struction is actually the complement of the one given in Jégou [16]. This is
mostly a matter of convenience; the algorithms we present are easier formulated
in terms of independent sets than maximum cliques.

3 Partitioning and Colouring Problems

We now present the method behind the algorithms for the colouring problems
in this paper. We begin by defining what a partitioning is, and briefly discuss
the partitioning based method for construction algorithms, before investigating
how it applies to colouring problems.

Definition 3. A partitioning P = {P1, P2, . . . , Pm} of a domain D is a division
of D into m disjoint subsets such that

⋃
P = D. A k-partition is an element of

P with k elements. Given a partitioning P , we let σ(P, k) denote the number of
k-partitions in P . Since the actual elements in the subset Pi ∈ P is often less
interesting than their number, we let the multiset [|P1|, . . . , |Pm|] represent P .

As an example of how the partitioning method could be used to construct an
algorithm for solving CSPs, consider the following: An algorithm for solving
(4, 2)-CSPs has a running time of O (1n1+n2 · αn3 · βn4), where ni is the number
of variables with domain size i. Thus for problems with domains of sizes 1 and
2 it is polynomial (recall that we have omitted polynomial factors), for domain
size 3 it runs in O (αn), and for domain size 4, it runs in O (βn).

Using this algorithm, we want to solve, say, a (7, 2)-CSP. First, we split the
domain of each variable into one part with 3 elements and one part with 4
elements. So if the original domain is {1, 2, 3, 4, 5, 6, 7}, we could, for example,
use the partitioning P1 = {1, 2, 3, 4} and P2 = {5, 6, 7}. Next, we consider each
possible way of restricting the variables to only take values from one of these
partitions. With n variables in the original problem we get k variables restricted
to P1 and n− k restricted to P2, and thus get a total running time of

O
(

n∑
k=0

αk · βn−k

)
= O ((α + β)n) .

When we apply this to colouring problems, we exploit the fact that if two vari-
ables are assigned different partitions, then any constraint between them is triv-
ially satisfied.
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Let Θ = (X, D, C) and Θ′ = (X ′, D′, C′) be two CSPs with the property that
given solutions f to Θ and f ′ to Θ′, they can be combined to get a solution
to Θ∪ = (X ∪ X ′, D ∪ D′, C ∪ C′) (possibly modulo renaming of the variables
and domain values.) Conversely, the two subinstances Θ and Θ′ correspond to
a partitioning of Θ∪; the partitioning is [|D|, |D′|], and the variables in X are
mapped to D, while those in X ′ are mapped to D′.

We will let Col (k, n) denote an arbitrary instance of a problem with domain
size k and n variables which can be partitioned in this way.

Theorem 1 (Angelsmark [1]). Let A1, . . . , Am be algorithms for the problems
Col (k1, n), . . . , Col(km, n), respectively, with running times in O (αn). Given a
partitioning P = {P1, . . . , Pp} of the set {1, . . . , k} such that for any partition
Pi, we have an algorithm for solving problems with this domain size, i.e. |Pi| ∈
{k1, k2 . . . , km}, there exists a partitioning based algorithm for solving Col (k, n)
which has a running time of

O ((|P | − 1 + α)n) .

We note that the running time given by Theorem 1 is largely dependent on the
number of partitions and less so on the running times of the algorithms for the
different partitions. Consequently, in order to minimise the running times, we
want to use as few partitions as possible. First, note that if we have an algorithm
for Col (k, n), then we can of course get an algorithm for Col(2k, n′) by using the
partitioning [k, k]. The idea here is to use a recursive partitioning to build the
Col(k, n)-algorithm bottom up; to get an algorithm for Col (4k, n), we first create
an algorithm for domains of size 2k from a Col (k, n) algorithm together with
the partitioning [k, k], provided we have an algorithm for Col (k, n). If this is not
the case, then we have to construct one by using the partitioning [�k/2�, 	k/2
],
etc. Whether this partitioning is optimal is still an open question.

In general, given algorithms for instances with domain sizes k1, . . . , km, with
running times O

(
βn

ki

)
, i ∈ {1, . . . , m}, if it is faster to use the available al-

gorithm for size ki than using the partitioning [�ki/2�, 	ki/2
], i.e. T ([ki]) <
T ([�ki/2�, 	ki/2
]), then there exists a partitioning based algorithm for solving
for domain size k which has a running time of O (αn

k ), where αk is the solution
to the following recurrence:

αk =
{

βk if k ∈ {k1, . . . , km}
1 + α�k/2� otherwise.

Solving this equation is straightforward, albeit tedious, thus we will omit this
part of the proofs.

4 k-Colouring Algorithm

We will now show how the partitioning method applies to the problem of finding
a k-colouring of a graph. This being the first of the problems, we will describe
it in more detail than the remaining problems. For a further discussion of the
method, see Angelsmark [1]. Formally, we define the problem as follows:
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Table 2. The fastest polynomial space algorithms for k-colouring, k < 7

k Time Reference
3 O (1.3289n) Eppstein [11]
4 O (1.7504n) Byskov [5]
5 O (2.1020n) Byskov & Eppstein [7]
6 O (2.3289n) Byskov [5]

Definition 4. Let G be an arbitrary graph and k a natural number. The k-
Colouring problem consists of finding a function f : V (G) → {1, . . . , k} which
assigns ‘colours’ to the vertices in such a way that for v, w ∈ V (G), f(v) �= f(w)
if {v, w} ∈ E(G), i.e. adjacent vertices are given different colours.

Before we can apply Theorem 1, we need to show that the k-colouring problem
is a Col (k, n) problem. To see this, note that if the vertices of a graph G are
partitioned into two disjoint subsets, S1, S2, and the subgraphs induced by these
can be coloured using the colours {1, . . . , k1}, and {k1 + 1, . . . , k2}, respectively,
then G can be coloured using the colours {1, . . . , k2}, since any assignment made
by the colourings of S1 and S2 will also be allowed in G.

Once we know that Theorem 1 is applicable, it is straightforward to get an
algorithm for the problem, shown in Algorithm 1. The running time of the algo-
rithm is of course the one given in Theorem 1.

Theorem 2. Algorithm 1 correctly solves the k-colouring problem.

Proof. Let P be a partitioning of the domain values as given in Theorem 1, i.e.,
for any partition Pi ∈ P , there exists an algorithm A|Pi| for determining |Pi|-
colourability of graphs with n variables in O (αn) time. Next, let G be a graph
and f an arbitrary total function from V (G) to P — i.e. a function which assigns
the vertices to partitions.

Lines 3 to 6 work as follows: The vertices restricted to partition Pi induces
a subgraph, and we can determine |Pi|-colourability of this subgraph in O (αn)
time. Obviously, if we have two of these induced subgraphs, and we know that
we can colour them using, say, k1 and k2 colours, respectively, then we can colour
the union of them using k1 + k2 colours. So, by induction, the variable a will,
once all of the induced subgraph have been examined, be true iff the graph is
k-colourable. Repeating this for all total functions ensures that we will examine
all possible restrictions of vertices to partitions. ��

Algorithm 1 only determines the existence of a k-colouring (returning “yes” if
one exists), but it is of course straightforward to change it to return an explicit
colouring.

In the literature, we find a number of different algorithms for determining k-
colourability of a graph. Table 2 contains the currently fastest polynomial space
algorithms for k ≤ 6. For k > 6, the most efficient polynomial space algorithm
for k-colouring is the O ((k/ck)n) time algorithm by Feder & Motwani [13]. We
will not get an improvement over the bounds in Table 2 from the partitioning



Partitioning Based Algorithms for Some Colouring Problems 51

Algorithm 1. Partitioning based k-Colouring algorithm
k -COL (G, P )

1. for each total function f : V (G) → P do
2. a := true
3. for each Pi ∈ P do
4. G′ := G|{v ∈ V (G) | f(v) = Pi}
5. a := a ∧ A|Pi|(G′)
6. end for
7. if a then
8. return “yes”
9. end for

10. return “no”

method, but we do get a way of constructing algorithms for any k > 6, which is
faster than O ((k/ck)n).

As we noted earlier, the number of partitions has a large impact on the running
time of the algorithm. For example, if we want an algorithm for, say, 8-colouring,
it is tempting to use the partitioning [2, 2, 2, 2], since 2-colouring is polynomial.
This, however, gives a running time of O (4n), while if we use the partitioning
[4, 4], we get a running time of O (((2 − 1) + 1.7504)n) = O (2.7504n), which is
an enormous improvement. Using the partitioning [3, 3] we get a 6-colouring algo-
rithm with the same running time as in [5], O ((2− 1 + 1.3289)n) = O (2.3289n).

Now let βn
i , i ∈ {3, 4, 5} denote the running times of the 3-, 4- and 5-colouring

algorithms in Table 2.

Theorem 3. If we can solve 3-, 4-, 5-Colouring in O (βn
i ) time, for i =

3, 4, 5, respectively, then there exists a partitioning based algorithm for solving
k-Colouring, k > 6, which has a running time of O (αn

k ), where

αk =

⎧⎨⎩
i− 2 + β5 if 2i < k ≤ 2i + 2i−2

i− 1 + β3 if 2i + 2i−2 < k ≤ 2i + 2i−1

i− 1 + β4 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 2.

Proof. Using the partitioning [	k/2
, �k/2�] recursively, together with the colour-
ing algorithms above, a partitioning based algorithm will have a running time
of O (αn

k ), where αk is given by the solution to the following recurrence:

αk =
{

βk if k ∈ {3, 4, 5}
1 + α�k/2� otherwise

Solving the equation gives the result. ��
Thus if we wish to determine 14-colourability of a graph, we start with the
pre-existing algorithms for 3- and 4- colourability, and let them be parts of a
7-colourability algorithm which uses the partitioning [3, 4]. From this we get
an algorithm for 14-colourability which works with the partitioning [7, 7]. The
running time, given by Theorem 3, is then O ((2 + β4)n) ≈ O (3.7504n).
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5 Max Ind k-Colouring Algorithm

The general Max Ind (d, 2)-CSP is defined as follows:

Definition 5 (Jonsson & Liberatore [17]). Let Θ = (X, D, C) be an instance
of (d, l)-CSP. The Max Ind (d, l)-CSP problem consists of finding a maximal
subset X ′ ⊆ X such that Θ|X ′ is satisfiable.

Here, Θ|X ′ = (X ′, D, C′) is the subinstance of Θ induced by X ′, i.e. the CSP we
get when we restrict Θ to the variables in X ′ and the constraints which involve
only variables from X ′, viz.,

C′ := {c ∈ C | c(x1, x2, . . . , xl) ∈ C, x1, . . . , xl ∈ X ′}.

When we restrict this problem to colourings, we get the Max Ind k-COL
problem, which is the problem of assigning colours to as many vertices as possible
without having neighbours of the same colours. Unlike the k-colouring problem,
not every vertex is necessarily assigned a colour.

Definition 6. Given a graph G and a natural number k, the Max Ind k-COL
problem is to find a subset S ⊆ V (G) such that the induced subgraph G(S) is
k-colourable and |S| is maximised.

The problem is still NP-complete even under this restriction (see Jonsson &
Liberatore [17]). Theorem 1 is of course applicable to this problem, and it
has been shown that Max Ind 2-COL and Max Ind 3-COL can be solved
in O

(
1.20252n

)
= O (1.4460n) and O

(
1.20253n

)
= O (1.7388n) time, respec-

tively [4], thus we can combine this with the following theorem to get an algo-
rithm for Max Ind k-COL.

Theorem 4. Given that we can solve Max Ind 2-COL and Max Ind 3-COL
in time O (βn

2 ) and O (βn
3 ), respectively, there exists a partitioning based algo-

rithm for solving Max Ind k-COL which has a running time of O (αn
k ), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + β2 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 1.

Proof. We use the partitioning [	k/2
, �k/2�] recursively, and we get from The-
orem 1 that a partitioning based algorithm will have a running time of O (αn

k ),
where αk is given by the following recurrence:

αk =

⎧⎨⎩
β2 if k = 2
β3 if k = 3
1 + α�k/2� otherwise

Solving the equation gives the result. ��
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Algorithm 2. Algorithm for Max Value 2-COL

MaxVal 2 -COL (Θ, w)

1. Let G be the microstructure of Θ.
2. m := 0
3. if G is 2-colourable then
4. Let f : V (G) → {1, 2} be a 2-colouring of G
5. for each connected component c of G do
6. m := m+

max
v∈c

f(v)=1

w(v),
f(v)=2

w(v)

7. end for
8. end if
9. return m

6 Max Value k-Colouring

The Max Value problem for CSPs has been studied in, e.g. Angelsmark et
al. [3], and is formally defined as follows:

Definition 7 (Angelsmark et al. [3]). Let Θ = (X, D, C) be an instance
of (d, l)-CSP, where D = {a1, a2, . . . , ad} ⊆ R, X = {x1, x2, . . . , xn}. Given a
real vector w = (w1, . . . , wn) ∈ R

n, the Max Value problem for Θ consists in
finding a solution f : X → D which maximises

n∑
i=1

wi · f(xi)

The colouring version of the Max Value problem, the Max Value k-COL
problem, is defined as follows:

Definition 8. Given a graph G, with |V (G)| = n, a real vector of weights w =
(w1, . . . , wn) ∈ R

n and a natural number k, the Max Value k-COL problem
consists in finding a function f : V (G) → {1, . . . , k}, with f(v) �= f(v′) if
(v, v′) ∈ E(G), such that ∑

v∈V (G)

wv · f(v)

is maximised.

For clarity, we let (Θ,w), where Θ = (X, D, C), denote an instance of Max
Value 2-COL. Now let G be the microstructure graph of Θ, and, for x ∈ X , let
η(x) be the number of constraints x is involved in (in the microstructure, this
corresponds to deg(x[i])− 1).
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Theorem 5. There exists an algorithm for solving the Max Value 2-COL
problem which runs in polynomial time.

Proof. We show that Algorithm 2 correctly solves the Max Value 2-COL
problem.

First of all, we note that if the microstructure graph is not 2-colourable, then
the Max Value 2-COL instance has the trivial solution 0, since there are no
colourings, and this is what the algorithm returns.

Next we observe that if a 2-colouring exists, then for each of the connected
component in G, there are exactly two possible colourings. Consequently, since
we can choose the colour with largest weight for each connected component in
isolation, when the algorithm reaches line 9, m will contain the weight of the
maximum solution. ��

In order to successfully apply the partitioning method here, we need to take
care of odd-sized colourings, and thus we need an algorithm for the Max Value
3-COL problem.

In the analysis of this algorithm, we encounter a recursion on the form T (n) =∑k
i=1 T (n − ri) + p(n), where p(n) is a polynomial in n, and ri ∈ N

+. These
equations satisfy T (n) ∈ O (τ(r1, . . . , rk)n), where τ(r1, . . . , rk) is the largest
real-valued root to 1−

∑k
i=1 x−ri (see Kullmann [19].) Note that this bound does

not depend on neither p(n) nor the boundary conditions T (1) = b1, . . . , T (k) =
bk. We call τ the work factor.

First, some additional definitions: A variable having three possible domain
values we call a 3-variable, and a variable having two possible values will be
called a 2-variable. The size of an instance is defined as m(Θ) = n2 + 2n3,
where ni denotes the number of i-variables in Θ. Consequently, the size of an
instance can be decreased by either removing a 2-variable or eliminating one of
the possible values for a 3-variable, turning it into a 2-variable.

Given a variable x with three possible values, {d1, d2, d3}, ordered in such
a way that w(x, d1) > w(x, d2) > w(x, d3), let δ(x) := (c1, c2, c3) where ci =
degG(x[di]), G being the microstructure graph. If x is a 2-variable then, similarly,
we define δ(v) := (c1, c2). The maximal weight of a variable x, i.e. the domain
value d for which w(x, d) is maximal, will be denoted xmax.

Since the only allowed constraint is disequality, it is never the case that a
3-variable has two unconstrained values— for example, if x[d1] had an edge to
y[d1], but x[d2] and x[d3] had no edges to y, this would mean that vertices y[d2]
and y[d3] had already been removed, and thus we could propagate y[d1], the only
possible value for y.

Lemma 1. If there is a variable x with δ(x) = (≥ 3, ·, ·), we can reduce the
instance with a work factor of τ(4, 2).

Proof. If xmax is chosen, then we remove x together with its two external neigh-
bours, thus reducing the size of the instance by (at least) 4. The only reason not
to choose xmax is, of course, that one of its external neighbours has alread been
chosen, reducing the size of the instance by 2. ��
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Algorithm 3. Algorithm for Max Value 3-COL
MaxVal 3 -COL (G, w)

1. if at any time, the domain of a variable becomes empty,
this branch can be pruned.

2. Apply Lemma 2, keeping track of eliminated variables.
3. if Lemma 1 applies then
4. return the maximum of the branches described in Lemma 1
5. else
6. Let Γw be the weighted 2-SAT instance corresponding to G.
7. return 2 -SATw (Γw )
8. endif

After applying the reduction in this lemma, it is holds that no variable x has
xmax with degree greater than 2. This means that either the neighbours of xmax
are the other possible values of x, leaving x unconstrained, or one of the other
values has been eliminated, and there are only two possible values for x. We
can apply the following lemma to get rid of all of the cases of unconstrained
variables, and what we have left is an instance of weighted 2-SAT.

Lemma 2 (Angelsmark & Thapper [4]). For any instance Θ, we can find
an instance Θ′ with the same optimal solution as Θ, with size smaller than or
equal to that of Θ and to which none of the following cases apply.

1. There is a 2-variable x for which δ(x) = (2,≥ 1).
2. There is a variable x for which the maximal weight is unconstrained.

Thus, we get the following theorem:

Theorem 6. Max Value 3-COL can be solved by a deterministic algorithm
in time O (1.6181n).

Proof. Algorithm 3 has, apart from the call to 2 -SATw , a work factor of τ(4, 2) ≤
1.2721. Since we used m(Θ) = n2 + 2n3 as the measure of size, the size of an
instance is 2n. Consequently, the algorithm has a running time of

O
(
(max(1.2721, 1.2561))2n

)
i.e. O (1.6181n). ��

Since we are only considering colourings, we can apply Theorem 1 and get:

Theorem 7. If we can solve Max Value 2-COL in polynomial time, and Max
Value 3-COL in O (βn

3 ) time, respectively, then there exists a partitioning based
algorithm for solving Max Value k-COL which has a running time of O (αn

k ),
where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + 1 if 2i + 2i−1 < k ≤ 2i+1

and i ≥ 1.
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Proof. Again, we recursively use the partitioning [	k/2
, �k/2�], and from The-
orem 1 we get an algorithm which will have a running time of O (αn

k ), where αk

is given by the solution to the following recurrence:

αk =

⎧⎨⎩
1 if k = 2
β3 if k = 3
1 + α�k/2� otherwise

Solving the equation gives the result. ��

7 Max k-COL and #Max k-COL Algorithms

Max CSP is probably one of the most widely studied optimisation problems
for CSPs. Williams [22] presents an impressive algorithm for this problem, the
first to run in provably less than O (dn) time, as well as the counting version of
this problem, i.e. the problem of finding how many solutions there are, usually
denoted #Max CSP. Formally, we define the problem as follows:

Definition 9. Given an instance Θ = (X, D, C) of (d, 2)-CSP, the Max (d, 2)-
CSP problem is to find an assignment f : X → D which satisfies the maximum
number of constraints.

If we restrict Max CSP to colouring problems, we get the Maximum
k-Colourable Subgraph problem, or Max k-COL— also known as the un-
weighted case of the Max k-CUT problem. Note the difference to the Max Ind
k-COL problem; there, we were dealing with an induced subgraph.

Definition 10. Given a graph G and a natural number k, the Max k-COL
problem is to find a subset E′ of E(G) such that the graph (V (G), E′) is k-
colourable and |E′| maximised. The problem of determining the number of such
subsets is denoted #Max k-COL.

Williams [22] shows that Max k-COL can be solved in O
(
kωn/3

)
time, where

ω < 2.376, but we can improve this bound using the partitioning method:

Theorem 8. Given that we can solve Max 2-COL and Max 3-COL (#Max
2-COL and #Max 3-COL) in time O (βn

2 ) and O (βn
3 ), respectively, there exists

a partitioning based algorithm for solving Max k-COL (#Max k-COL) which
has a running time of O (αn

k ), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + β2 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 1. Furthermore, the space requirement is equal to that of the most de-
manding of the given algorithms.
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Proof. Again, we use the partitioning [	k/2
, �k/2�] recursively. From Theo-
rem 1, we know that a partitioning based algorithm will have a running time of
O (αn

k ), where αk is given by the solution to the following recurrence:

αk =

⎧⎨⎩
β2 if k = 2
β3 if k = 3
1 + α�k/2� otherwise

Solving the equation gives the time complexity stated in the theorem.
As for the space complexity, the algorithms for Max 2-COL and Max

3-COL are applied in sequence, and thus their space requirement remains un-
changed. ��

Combining this theorem with the algorithms for Max 2-COL (#Max 2-COL)
and Max 3-COL (#Max 3-COL) with running times of O (1.7315n) and
O (2.3872n), respectively, utilising O

(
2n/3

)
and O

(
3n/3

)
space, gives an algo-

rithm for the general Max k-COL (#Max k-COL) problem.
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Linköpings Universitet, Sweden, 2005.

2. Ola Angelsmark and Peter Jonsson. Improved algorithms for counting solutions in
constraint satisfaction problems. In Francesca Rossi, editor, Principles and Prac-
tice of Constraint Programming, 9th International Conference (CP-2003), Kinsale,
Ireland, September 29 - October 3, 2003, Proceedings, volume 2833 of Lecture Notes
in Computer Science, pages 81–95. Springer–Verlag, 2003.

3. Ola Angelsmark, Peter Jonsson, and Johan Thapper. Two methods for constructing
new CSP algorithms from old. Unpublished manuscript, 2004.

4. Ola Angelsmark and Johan Thapper. A microstructure based approach to con-
straint satisfaction optimisation problems. In Ingrid Russell and Zdravko Markov,
editors, Recent Advances in Artificial Intelligience. Proceedings of the Eighteenth
International Florida Artificial Intelligence Research Society Conference (FLAIRS-
2005), 15-17 May, 2005, Clearwater Beach, Florida, USA, pages 155–160. AAAI
Press, 2005.

5. Jesper Makholm Byskov. Enumerating maximal independent sets with applications
to graph colouring. Operations Research Letters, 32(6):547–556, November 2004.



58 O. Angelsmark and J. Thapper

6. Jesper Makholm Byskov. Exact Algorithms for Graph Colouring and Exact Satis-
fiability. PhD thesis, Basic Research In Computer Science (BRICS), Department
of Computer Science, University of Aarhus, Denmark, August 2004.

7. Jesper Makholm Byskov and David Eppstein. An algorithm for enumerating max-
imal bipartite subgraphs. Unpublished manuscript (see also [6]), 2004.

8. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer
Languages, 6:47–57, 1981.

9. Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.
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Abstract. This paper presents an attempt to construct a ”practical”
CSP algorithm that assigns a variable with 2 values at every step. Such
a strategy has been successfully used for construction of ”theoretical”
constraint solvers because it decreases twice the base of the exponent of
the upper bound of the search algorithm.

We present a solver based on the strategy. The pruning mechanism
of the algorithm resembles Forward Checking (FC), therefore we term it
2FC. According to our experimental evaluation, 2FC outperforms FC on
graph coloring problems and on non-dense instances of randomly gener-
ated CSPs.

1 Introduction

Partition of domains is a strategy that allows to reduce the size of the search
space explored by a constraint solver. Consider a method based on the strategy
that partitions the domain of every variable into subsets of two values (if a
domain has an odd size than one subset is a singleton). The algorithm scans all
constraint networks obtained by restriction of the domain of every variable to
one of the partition classes. If at least one constraint network being scanned is
soluble, the algorithm returns the solution found. Otherwise, it reports failure.

Assume that the considered constraint network has n variables and the max-
imal domain size is d. Then a simple analysis shows that the algorithm scans
O((d/2)n) constraint networks if d is even and O(((d+1)/2)n) if d is odd. Taking
into account that constraint networks with domains of size at most two can be
solved efficiently [1], we get that these upper bounds determine the search space
size of the considered algorithm. Clearly, this size is much smaller than O(dn)
of FC, MAC, and others.

The strategy of domain partition has been successfully applied to the design
of constraint solvers with exact upper bounds. Sophisticated techniques based
on the strategy are presented in [2, 3]. However, the strategy attracted little
attention of researchers that investigate ”practical” approaches to construction
of complete constraint solvers.

This paper introduces an attempt to construct a ”practical” complete con-
straint solver based on domain partition. The main problem with the strategy

B. Hnich et al. (Eds.): CSCLP 2005, LNAI 3978, pp. 59–72, 2006.
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is that the resulting algorithm is not guaranteed to have a solution when all
variables are assigned. Therefore the algorithm could generate many ”long” in-
soluble 2-CNs (constraint networks with domain sizes at most 2) which makes
the actual time of its work close to the theoretical upper bound. To overcome
this difficulty, we introduce the following modifications.

– Variables are assigned one by one. A variable is assigned with 2 values if its
current domain contains at least 2 values. Otherwise, the variable is assigned
with one value. To present this situation in a more general form, we say that
at every step of the algorithm, a variable v is assigned with a subset S of its
current domain.

– Whenever a variable v is assigned with a set of values S, the algorithm
removes all values of unassigned variables that are incompatible with all the
values of S.

– The algorithm backtracks when the current domain of some variable becomes
empty.

– Whenever a variable v is assigned with a set {val1, val2}, a new conflict
is added between any pair (〈v1, val′1〉, 〈v2, val′2〉) of values of different unas-
signed variables v1 and v2 such that 〈v1, val′1〉 conflicts with 〈v, val1〉 and
〈v2, val′2〉 conflicts with 〈v, val2〉.

The proposed algorithm resembles FC with the main difference that a variable
can be assigned with 2 values. Therefore we call the algorithm 2FC. The main
property of 2FC is that whenever all variables are assigned, the resulting 2-CN
is guaranteed to have a solution.

In our experimental analysis, we compared 2FC to FC. The main experimental
observation is that 2FC strictly outperforms FC on graph k-coloring problem.
The rate of runtime improvement changes from a factor of 2 to 10. 2FC also
outperforms FC on randomly generated constraint networks with low density.

The experimental result suggest that the proposed approach could be useful
in the area of graph coloring. Another possible application of 2FC follows from
the fact that it returns a 2-CN which could have many solutions that can be
efficiently generated. Therefore the algorithm could be useful for dynamic envi-
ronments where constraints frequently change: it might allow quick replacing of
an inconsistent solution by another solution without performing search.

The rest of the paper is organized as follows. Section 2 provides necessary
background. Section 3 presents the 2FC algorithm. Section 4 proves correctness
of the 2FC algorithm. Section 5 demonstrates result of experimental evaluation.
Section 6 outlines directions of further investigation.

2 Preliminaries

The model we consider in the paper is binary constraint network (CN). A CN
Z = 〈V, D, C〉 is a triple consisting of a set of variables V , a set of domains D
and a set of constraints C. Let V = {v1, . . . , vn}. Then D = {D(v1), . . . , D(vn)},
where D(vi) is the domain of values of vi, C = {C(vi, vj)|i �= j, 1 ≤ i, j ≤ n},
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where C(vi, vj) ⊆ D(vi) × D(vj) is the set of all compatible pairs of values of
vi and vj . We refer to the parts of Z as VZ , DZ , and CZ . To emphasize that a
value val belongs to the domain of a variable v, we refer to this value as 〈v, val〉.
In this paper we consider a special case of constraint network, 2-CN, that is a
CN for which every domain has at most 2 values.

Given a CN Z as above, the task of Constraint Satisfaction Problem (CSP)
is to find a set P = {〈v1, val1〉, . . . , 〈vn, valn〉} such that every vali belongs to
the domain of vi and all values of P are mutually compatible (consistent), or to
report that there is no such a set. The set P is called a solution of Z.

A typical CSP search algorithm like Forward Checking (FC) [4] usually creates
a solution in an iterative manner. During its work it maintains a consistent set
of values of a subset of variables and tries to extend it to a solution. This set of
values is called a partial solution. Variables whose values are contained in the
partial solution are called assigned. Other variables are called unassigned. The
present paper introduces an algorithm that can assign a variable with more than
one value. We refer to a set of assigned values maintained by the algorithm as
an extended partial solution. When all variables are assigned, the algorithm has
an extended solution.

The following notion is frequently used further in the paper.

Definition 1. Let Z be a CN and let S be a set of values of Z. A subnetwork
Z ′ of Z induced by S is obtained as follows:

– take to Z ′ only those variables of Z whose values appear in S;
– the domain of every variable v of Z ′ is the intersection of the domain of v

in Z with S;
– two values are compatible in Z ′ if and only if they are compatible in Z.

To illustrate the notion, consider Figure 1. On the left side of the figure there
is a CN Z. Ellipses represent variables, black points represent values, conflicting
values are connected by arcs. The CN Z ′ is a subnetwork of Z induced by the set
of values encircled by additional circles. Note that Z ′ does not contain variable
V4 because no value of the domain of V4 is included in the inducing set of values.
Also note that there are conflicts between 〈V1, 2〉 and 〈V2, 2〉 and between 〈V2, 3〉
and 〈V3, 3〉 because these conflicts appear in the original CN.

Finally, we recall the notions of directional arc and path-consistency.

Definition 2. A value 〈vi, val〉 is consistent with a set of values S if it is com-
patible with at least one value of S.

Definition 3. A CN Z is called directionally arc-consistent with respect to an
order v1, . . . , vn of its variables if every value 〈vi, val〉 is consistent with a domain
of a variable vk whenever k < i.

Definition 4. A pair of values {〈vi, vali〉, 〈vk, valk〉} is consistent with a set of
values S if at least one value of S is compatible with both 〈vi, vali〉 and 〈vk, valk〉.
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Fig. 1. Illustration of a CN induced by a set of values

Definition 5. A CN Z is called directionally path-consistent with respect to the
order v1, . . . , vn of its variables if every pair of compatible values {〈vi, vali〉,
〈vk, valk〉} is consistent with the domain of a variable vl whenever l < i and
l < k.

3 The 2FC Algorithm

In this section we introduce a modification of FC that explores much smaller
search space than FC. In particular, processing a CN with n variables and max-
imal domain size d, the algorithm generates a search tree with O((d/2)n) nodes
if d is even and O(((d + 1)/2)n) nodes if d is odd.

The first 3 steps of the modification are the following.

1. Variables are assigned with subsets of their current domains. In particular,
let v be the variable being assigned currently. If the current domain of v
is of size at least 2 then v is assigned with a subset S of its domain such
that |S| = 2. Otherwise, if the domain is a singleton, v is assigned with the
domain itself.

2. Once a variable v is assigned with a set S, the algorithm removes from the
domains of unassigned variables all the values that are incompatible with all
the values of S.

3. Unassigning a variable v at the backtrack stage, the algorithm removes from
the current domain of v all values of the set assigned to v.

These 3 steps naturally generalize FC, providing the ability to assign a variable
with one value as well as with two values. However the resulting algorithm has
an essential drawback: when all variables are assigned, the CN induced by the
assigned values may be insoluble and this is in contrast to the standard FC
that has a solution when all variables are assigned. Thus the modified FC has a
restricted ability of early recognition of dead-ends.

To illustrate this drawback, consider a CN with variables {v1, v2, v3, v4} and
the domain of every variable {1, 2, 3}. Every 2 variables are connected by the
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inequality constraint. Assume that the algorithm assigns v1 with {1, 2}. No value
is deleted from the domains of the unassigned variables because there are values
incompatible with 1, values incompatible with 2, but none that are incompatible
with both of them. In the same way, the algorithm can assign v2, v3, v4 with
{1, 2}. The CN induced by the assigned values is clearly insoluble.

The following claim (proved in the next section) suggests a simple way to
overcome the drawback.

Lemma 1. Let Z be a 2-CN with no empty domain which is directionally arc-
consistent and directionally path consistent with respect to an order v1, . . . , vn of
variables of Z. Then Z is soluble. 1

Thus, to guarantee that whenever all the variables are assigned, the CN induced
by the assigned values is soluble, it is enough to ensure that it is directionally
arc-consistent and directionally path-consistent.

Note that directional arc-consistency is already ensured by the modification
number 2 described above. To ensure directional path-consistency, it is possible
to perform the following operation: Every time a variable v is assigned with a
set S, add a conflict between every pair P of compatible assignments of future
variables such that P is inconsistent with S.

We call the resulting algorithm 2FC. Algorithm 1 introduces its pseudocode.
The algorithm is presented in the form of a recursive procedure that gets a

CN Z as input. In the first 6 lines the termination conditions are checked. In
particular, if Z has no variables, the procedure returns ∅ (lines 1-3), if Z has a
variable with the empty domain, the procedure returns FAIL.

In line 7 a variable u is selected. In line 8 a CN Z ′ is created by removing
from Z the variable u and all its values. Before exploring the domain of u, the
algorithm removes from it all values that conflict with domains of some other
unassigned variable (line 9).

The loop described in lines 10-27 explores the domain of u. In lines 11-15 a
subset S of the current domain of u is selected. The set S contains 2 values
unless there is only one value in the current domain of u. After u is assigned
by S, the algorithm removes from the domains of variables of Z ′ all values
inconsistent with S (line 16). If the size of S is 2, the algorithm adds conflicts
between compatible pairs of values of Z ′ that are inconsistent with S (lines 18-
20). Then the function 2FC is applied recursively to Z ′ (line 22). If the output
of the recursive application is not FAIL, the procedure returns the union of the
output with S (line 24). (The operation is correct because the output of 2FC is
either FAIL or a set of values.) Otherwise, if the recursive application returns
FAIL, the algorithm removes S from the domain of u (line 26) and starts a new
iteration of the loop or finishes it if the domain of u is wiped out. In the latter
case the algorithm returns FAIL in line 28.

Note that when 2FC returns a set of values, a solution can from it by the
process described in the proof of Lemma 1. (See the next section.)
1 Note that the suggested sufficient condition of solubility of 2-CNs is weaker than

path-consistency whose sufficiency is proved in [1].
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Algorithm 1. function 2FC(Z)

1: if VZ = ∅ then
2: Return ∅
3: end if
4: if There is a variable with the empty domain then
5: Return FAIL
6: end if
7: Select a variable u
8: Z′ ← Z \ u
9: Remove from Dz(u) all values that are inconsistent with domains of unassigned

variables
10: while Dz(u)


= ∅ do

11: if |Dz(u)| ≥ 2 then
12: S ← {val1, val2}, where val1 and val2 are two values of Dz(u)
13: else
14: S ← Dz(u)
15: end if
16: Remove from the domains of Z′ the values that are inconsistent with S
17: if |S| ≤ 2 then
18: for every pair {〈v1, val′1〉, 〈v2, val′2〉} of compatible values of Z′ that is incon-

sistent with S do
19: CZ′(v1, v2) ← CZ′(v1, v2) \ {{〈v1, val1〉, 〈v2, val2〉}}
20: end for
21: end if
22: R ← 2FC(Z′)
23: if R


= FAIL then

24: Return R ∪ S
25: end if
26: DZ(u) = DZ(u) \ S
27: end while
28: Return FAIL

Consider an example of application of 2FC. Let Z be the CN described above
with variables {v1, . . . , v4}, each domain equal {1, 2, 3} and variables connected
by inequality constraint. Assume that v1 is assigned with {1, 2}. Then 2FC adds
conflicts between every pair of values 1 and 2 of different unassigned variables,
that is between 〈v2, 1〉 and 〈v3, 2〉, between 〈v2, 2〉 and 〈v3, 1〉 and so on. Assume
that in the next iteration, variable v2 is assigned with {1, 2}. Then values 1 and
2 are deleted from the current domains of v3 and v4. In the next iteration, trying
to assign v3, 2FC backtracks, because the only remaining values 〈v3, 3〉 wipes
out the current domain of v4. As a result of backtrack, 2FC unassigns v2. The
only possible next assignment is {3}. After the assignment, 2FC removes 3 from
the domains of v3 and v4. In the next iteration, 2FC tries again to assign v3, but
backtracks because both remaining values 1 and 2 wipe out the domain of v4.
This time, after unassigning v2, the current domain of v2 is finished; therefore
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2FC backtracks again and changes the assignment of v1 to {3}. In a few iteration
the algorithm finishes with FAIL because of wiping out of the current domain
of v1.

A drawback of 2FC is large overhead spent to addition of conflicts between
values of unassigned variables. It is not hard to show that O(n2d2) additional
consistency checks per iteration must be spent. The overhead can be reduced if
we observe that 2FC checks compatibility of values of two variables only if one
of these variables is either assigned or selected to be assigned.

Based on the observation we suggest a procedure of adding new conflicts
based on the notion of critical value. Let u be a variable assigned with a set
{val1, val2}. We say that 〈u, val1〉 is critical with respect to a value 〈v, val〉 if
〈v, val〉 conflicts with 〈u, val2〉. Instead of performing lines 18-19 in Algorithm 1,
new conflicts can be added in the following ”lazy” way. Whenever a new variable
v is selected to be assigned, a conflict is added between every pair of compatible
values 〈v, val〉, 〈w, val′〉 that satisfies the following conditions:

– w is an unassigned variable other than u;
– val′ belongs to the current domain of w;
– 〈w, val′〉 conflicts with at least one critical value with respect to 〈v, val〉.
One can calculate that the suggested technique of updating of constraints

takes O(n2d) consistency checks per iteration. We use the technique in our im-
plementation of 2FC. We decided not to describe the method directly in the
pseudocode because it reduces readability of the code and makes the correctness
proof more complicated.

4 Theoretical Analysis

In this section we prove correctness of 2FC. We start from proving Lemma 1.

Proof of Lemma 1. By induction on n, the number of variables of Z. It is trivial
for n = 1. For n > 1, assign vn with a value valn that belongs to its domain. Let
Z ′ be a 2-CN obtained from Z by removing vn and deleting from the domains
of the rest of variables all values that are incompatible with 〈vn, valn〉. Observe
the following properties of Z ′.

– The domains of all variables of Z ′ are not empty. Really, an empty domain of
some variable v in Z ′ would mean that 〈vn, valn〉 conflicts with all the values
of the domain of v in Z in contradiction to the directional arc-consistency
of Z.

– Z ′ is directionally arc-consistent with respect to the order v1, . . . , vn−1. As-
sume by contradiction that a value 〈vk, val〉 is inconsistent with the domain
of vi, i < k. If the domain of vi in Z ′ is the same as in Z, 〈vk, val〉 is in-
consistent with vi in Z in contradiction to our assumption about directional
arc-consistency of Z. Otherwise, one of the values of the domain of vi is
incompatible with 〈vn, valn〉, the other is incompatible with 〈vk, val〉, while
〈vn, valn〉 and 〈vk, val〉 are compatible. In this case we get contradiction with
out assumption about directional path-consistency of Z.
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– Z ′ is directionally path-consistent. For otherwise, if we have two compatible
values 〈vk, valk〉 and 〈vl, vall〉 that wipe out the domain of some variable
vi, (i < k, l), the same situation occurs in Z in contradiction to directional
path-consistency of Z.

Thus Z ′ satisfies all conditions of the lemma and has n−1 variables, therefore
it is soluble by the induction assumption. Let S be a solution of Z ′. Note that
all values of Z ′ are compatible with 〈vn, valn〉. Therefore S ∪ {〈vn, valn〉} is a
solution of Z. �.

The next lemma claims that every extended partial solution generated by 2FC
satisfies the conditions of Lemma 1.

Lemma 2. Every extended partial solution generated by 2FC induces a 2-CN
without empty domains, directionally arc-consistent with respect to the chrono-
logical order of assignment of variables, and directionally path consistent with
respect to the same order.

Proof. By induction on the length n of the extended partial solution. It is clear
that the lemma is valid for n = 1. For n > 1, let S be the considered extended
partial solution and let v1, . . . , vn be the order according to which the variables
were assigned. By the induction assumption, the extended partial solution ob-
tained by removing vn satisfies the conditions of the lemma. Therefore, if S
violates these conditions then the values assigned to vn violate either the di-
rectional arc-consistency or the directional path-consistency. Assume that the
former holds. That is, a value val of assigned to vn is inconsistent with all values
assigned to vk (k < n). However, such a situation cannot happen because 2FC
would remove val from the current domain of vn when vk has been assigned. For
the latter, assume that a value val assigned to vn, together with a compatible
value val′ assigned to some vk are inconsistent with the set of values assigned
to some vi (i < k, n). However, such a situation cannot happen as well because
2FC would add a conflict between 〈vk, val′〉 and 〈vn, val〉 when vi was selected
to be assigned. Thus the lemma holds for S. �
Now we are ready to claim the correctness of 2FC.

Theorem 1. The 2FC algorithm is correct.

Proof. To prove correctness, we have to prove that the algorithm terminates
and also that it is sound and complete.

Termination is easy to verify by induction. If the underlying CN has 0 vari-
ables, the algorithm clearly terminates. Otherwise, 2FC selects a variable, assigns
it with some partition class of its domain, and applies recursively to a CN created
by the rest of variables (with updated constraints). By the induction assumption,
every recursive application eventually finishes and also the number of partition
classes in the first variable is finite so the algorithm terminates.

Soundness (solubility of an extended solution returned by 2FC) directly fol-
lows from Lemmas 1 and 2.
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It follows from termination and soundness that 2FC always returns FAIL
when processes an insoluble CN. It remains to prove completeness, that is to
show that 2FC always returns a solution when processes a soluble CN. In essence,
all we have to show is that the additional conflicts generated by 2FC do not cause
missing of a solution.

We prove completeness by induction on the number n of variables of the CN.
Completeness follows immediately for n = 1. For n > 1, let v be the variable
that 2FC selects to be assigned first. If the underlying CN is soluble then 2FC
eventually assigns v with a set of values S that belongs to an extended solution.
Then 2FC removes from the domains of the rest of variables all values that are
inconsistent with S and adds conflicts between pairs of compatible values that
wipe S out. Note that neither the removed values can be in the same solution
with any value of S nor pairs of values that are made incompatible. Therefore
2FC is applied recursively to a soluble CN where it finds an extended solution
by the induction assumption. �

5 Experimental Evaluation

It is not hard to show that 2FC explores O(�d/2�n) nodes of the search tree and
its running time is the bound multiplied by a polynomial. Clearly, this bound
is much smaller than O(dn) upper bound for FC. However, we are interested
to evaluate the practical merits of 2FC. To do this we compare in this section
actual running times of 2FC and FC.

We implemented the algorithms in Microsoft Visual C++ 6.0 and tested them
on a computer with CPU 2.4GHz and 0.2GB RAM. We used two measures
of computation effort: the number of nodes visited and runtime (in seconds).
For every tuple of parameters of the tested instances, the computation effort
measures were obtained as average of 50 runs.

In our implementation, variables are ordered by the Fail-First heuristic [5]
which takes first a variable with the smallest domain. The values of the variable
being assigned are ordered according to the min-conflict heuristic, that is, val-
ues that conflict with the less number of values in the domains of unassigned
variables are assigned first. (FC assigns the values one by one, while 2FC assigns
them in pairs.)

We compared these algorithms on graph k-coloring problem and on randomly
generated binary CNs.

Given a graph G with n vertices and k-colors, the CN that encodes the k-
coloring problem for G has n variables corresponding to the vertices of G. The
domain of every variable is {1, . . . , k}. Pairs of variables that correspond to
adjacent vertices of G are connected by the inequality constraint.

We generated 3 sets of instances: the first with 60 and 6 colors, the second
with 45 vertices and 8 colors and the third with 30 vertices and 10 colors. For
every set of instances we tried densities from 10% to 90% by steps of 5%.

The results of comparison of 2FC and FC on the first set of instances are
shown on Figures 2 and 3. In this set of instances the phase transition region
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Fig. 2. 2FC vs. FC for graphs with 60
vertices and 6 colors (nodes visited)

Fig. 3. 2FC vs. FC for graphs with 60
vertices and 6 colors (runtimes)

falls to the area of small density. Clearly, 2FC performs better than FC on this
set of instances.

The results of comparison of 2FC and FC on the second set of instances are
shown on Figures 4 and 5. In this experiment the graph that are most hard
for coloring have an average density. Note that for denser graphs the rate of
improvement of 2FC with respect to FC grows.

The results of comparison of 2FC and FC on the third set of instances are
shown on Figures 6 and 7. In this experiments the phase transition region falls
to the area of dense graphs. Note that here 2FC exhibits a larger factor of
improvement as compared to the previous cases.

Comparing 2FC and FC on randomly generated CNs, we generated them using
4 parameters: the number of variables, the domain size, density, and tightness
[6]. To generate a set of instances, we fixed the number of variables, the domain
size, and the density and varied the tightness from 10% to 90% by steps of 5%.

In the first set of experiments, the generated CNs have 60 variables domains
of size 10 and density 10%. Figures 8 and 9 compare the number of nodes visited
and the runtimes, respectively. We can see that 2FC outperforms FC on this set
of instances.

Unfortunately, on denser instances of randomly generated CNs, 2FC works
worse than FC. Moreover, 2FC becomes worse and worse compared to FC as the
underlying CN gets denser. To see this, consider the following two sets of sets of
experiments (Figures 10, 11, 12, and 13). On the set of instances with density
0.2, 2FC continues to perform better in the number of nodes visited while spends
more runtime. However, on the instances with density 0.8, it looks worse with
respect to the both measures.



A CSP Search Algorithm with Reduced Branching Factor 69

Fig. 4. 2FC vs. FC for graphs with 45
and 8 colors (nodes visited)

Fig. 5. 2FC vs. FC for graphs with 45
and 8 colors (runtimes)

Fig. 6. 2FC vs. FC for graphs with 30
and 10 colors (nodes visited)

Fig. 7. 2FC vs. FC for graphs with 30
and 10 colors (runtimes)

Thus, according to our experiments, 2FC performs better than FC on graph
coloring problems and non-dense instances of randomly generated CN, while
works worse on denser random CNs.
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Fig. 8. 2FC vs. FC for CNs with 60 vari-
ables, domain size 10, and density 10
(nodes visited)

Fig. 9. 2FC vs. FC for CNs with 60 vari-
ables, domain size 10, and density 10
(runtimes)

Fig. 10. 2FC vs. FC for CNs with 50
variables, domain size 10, and density 20
(nodes visited)

Fig. 11. 2FC vs. FC for CNs with 50
variables, domain size 10, and density 20
(runtimes)



A CSP Search Algorithm with Reduced Branching Factor 71

Fig. 12. 2FC vs. FC for CNs with 40
variables, domain size 10, and density 80
(nodes visited)

Fig. 13. 2FC vs. FC for CNs with 40
variables, domain size 10, and density 80
(runtimes)

6 Discussion

We introduced the 2FC algorithm which is based on the idea of assigning a
variable with two values instead of one. In this section we discuss possible ap-
plications of the proposed approach and directions of further development.

According to our experimental results, 2FC performs very well on graph k-
coloring problem. This result suggests the possibility of combining the proposed
approach (of assigning a vertex with 2 colors) with branch-and-bound algorithms
that find chromatic numbers of graphs (like [7]). The proposed approach could
also be useful in the area of resource allocation problems because many of such
problems, like timetabling [8], have binary constraint networks with inequality
constraints.

On the other hand, 2FC is not very successful on random constraint networks.
A natural way of improvement of its pruning ability is replacing FC by MAC,
that is design of 2MAC. We expect that 2MAC would behave better with respect
to MAC than 2FC does with respect to FC. This is because maintaining arc-
consistency has a better ability than FC to utilize the conflicts that are added
after every new assignment.

An interesting direction of further research is the application of the approach
to CNs with non-binary constraints. Note that the application cannot be straight-
forward because solving a 2-CN with non-binary constraints is NP-complete in
general (it can be shown by reduction from SAT). A possible way to recognize
dead-ends early is maintaining the current extended partial solution S together
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with a solution T of the CN induced by S. Every time when S grows by assigning
a new variable, T must grow also. Solving a 2-CN with non-binary constraints
at every iteration of the algorithm could require too much time, therefore one
has to develop heuristic methods of quick solving of such CNs.

2FC could also be useful in dynamic environments where solutions are fre-
quently discarded because of updating of constraints. The set of values returned
by 2FC can contain many solutions and they can be efficiently extracted. There-
fore, there is a chance that once a single solution is discarded, another solution
could be found instantly without applying search.

Finally, there is an intriguing connection of the proposed approach with the
technique of bucket elimination [9]. In its simplest form, the principle of bucket
elimination states that whenever there is an unassigned variable v conflicting
with at most two other unassigned variables, variable v can be eliminated. To
preserve consistency, conflicts must be added between the pairs of values that
wipe out the current domain of v. Note that the described bucket elimination
technique as well as assigning a variable with two values have the following
common paradigm: assign a variable v with a subset s of its domain such that
every minimal consistent partial solution on the ”future” variables that wipes s
out has the size at most 2. Bucket elimination is an ”extremal” realization of
the paradigm where a variable is assigned with the whole domain. Assigning
a variable with only one value is another case of extremal realization. Then
assigning a variable with two values can be considered as some ”intermediate”
case. Continuing the reasoning, we derive that there may be other ”intermediate”
realizations of the paradigm. For example, a more flexible version of bucket
elimination can be considered, where a variable is assigned with a subset of its
values that conflict with at most two unassigned variables.
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Abstract. “Heuristic synergy” refers to improvements in search performance
when the decisions made by two or more heuristics are combined. This paper
considers combinations based on products and quotients, and a less familiar form
of combination based on weighted sums of ratings from a set of base heuristics,
some of which result in definite improvements in performance. Then, using recent
results from a factor analytic study of heuristic performance, which had demon-
strated two main effects of heuristics involving either buildup of contention or
look-ahead-induced failure, it is shown that heuristic combinations are effective
when they are able to balance these two actions. In addition to elucidating the
basis for heuristic synergy (or lack thereof), this work suggests that the task of
understanding heuristic search depends on the analysis of these two basic actions.

1 Introduction

Combining variable ordering heuristics that are based on different features sometimes
results in better performance that can be obtained by either heuristic working in iso-
lation. Perhaps the best-known instance of this is the domain/degree heuristic of [1].
Recently, further examples have been found based on weighted sums of rated selections
produced by a set of heuristics [2].

As yet, we do not have a good understanding of the basis for such heuristic synergies.
Nor can we predict in general which heuristics will synergise. In fact, until now there
has been no proper study of this phenomena, and perhaps not even a proper recognition
that it is a phenomenon. The present paper initiates a study of heuristic synergies. A
secondary purpose is to test the weighted sum strategy in a setting that is independent
of its original machine learning context.

The failure to consider this phenomenon stems in part from our inability to classify
heuristic strategies beyond citing the problem features used by a heuristic. However,
recent work has begun to shown how to delineate basic strategies, and with this work
we can begin to understand how heuristics work in combination. Although the work is
still in its early stages, it is already possible to predict which heuristics will synergise
in combination and to understand to some extent why this occurs.

The analysis to be presented depends heavily on the factor analysis of heuristic per-
formance, i.e. of the efficiency of search when a given heuristic is used to order the
variables. This approach is based on inter-problem variation. If the action of two heuris-
tics is due to a common strategy, then the pattern of variation should be similar. Using
this method, it has been possible to show that, for certain simple problem classes, such
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variation can be ascribed to only two factors, which can in turn be interpreted as basic
heuristic actions [3].

The next section describes the basic methodology. Section 3 gives results for heuris-
tic combinations involving products and quotients. Section 4 gives results for weighted
sums of heuristic ratings. Section 5 gives a brief overview of factor analysis as well as
methodological details for the present work and gives the basic results of a factor analy-
sis of variable ordering heuristics and their interpretation. Section 6 uses these results to
predict successes and failures of heuristic combinations. Section 7 considers extensions
using more advanced heuristics. Section 8 gives conclusions.

2 Description of Methods

The basic analyses in this paper used a set of well-known variable ordering heuristics
that could be combined in various ways. These are listed below together with the ab-
breviations used in the rest of the paper.

• Minimum domain size (dom, dm). Choose a variable with the smallest current do-
main size.

• Maximum forward degree (fd). Choose a variable with the largest number of neigh-
bors (variables whose nodes are adjacent to the chosen variable in the constraint
graph) within the set of uninstantiated variables.

• Maximum backward degree (bkd). Choose the variable with largest number of
neighbors in the set of instantiated variables.

• Maximum static degree (stdeg, dg). Choose a variable with the largest number
neighbors (i.e. the variable of highest degree).

In most cases, ties were broken according to the lexical order of the variable labels. In
such cases, max forward and max backward degree are both fixed-order heuristics, as
is max static degree.

The initial tests were done with homogeneous random CSPs because these are easy
to generate according to different parameter patterns. Problems were generated ac-
cording to a probability-of-inclusion model for adding constraints, domain elements
and constraint tuples, but where selection was repeated until the number of elements
matched the expected value for the given probability. In all cases generation began with
a spanning tree to ensure that the constraint graph was connected. Density as given in
this paper was calculated as the proportion of additional edges added to the graph. Typ-
ically, there were 100 problems in a set, although similar results were found in some
cases for sets of 500 problems. Problem parameters were chosen so that problems were
in a critical complexity region of the parameter space.

Some further tests were based on geometric problems, which are random problems
with small-world characteristics. Geometric problems are generated by choosing n
points at random within the unit square to represent the n variables, and then connecting
all pairs of variables whose points lie within a threshold distance. In this case, connec-
tivity was ensured by checking for connected components, and if there were more than
one, adding an edge between the two variables in different components separated by the
shortest distance.
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Unless otherwise noted, the tests in this paper were based on the MAC-3 algorithm.
The basic measures of performance were, (i) nodes visited during search, (ii) constraint
checks. In these experiments, both measures produced similar patterns of differences,
so for brevity the results in this paper are restricted to search nodes.

Synergy was evaluated for two kinds of strategy. The first type of strategy was to
take products and quotients of the basic heuristics, as is done in the well-known do-
main/degree heuristics. (For quotients and products involving backward degree, when
this component was zero, a value of one was used instead.) The second was to com-
bine evaluations of individual heuristics into weighted sums. This strategy was derived
from one used in a contemporary learning system [2]; to my knowledge there has been
no examination of its efficacy outside this context. In addition to being an alternative
strategy for obtaining improved heuristics, this method is useful in the present context
because it may allow more quantitative assessment of synergistic effects.
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Domain1 = {a, b, c}
Domain2 = {x}

Ratingdomain(1) = 8
Ratingdomain(2) = 10

Ratingfd deg(1) = 8
Ratingfd deg(2) = 7
Weight(domain) = 1
Weight(fd deg) = 3

Sum(Variable 1) = 1 ∗ 8 + 3 ∗ 8 = 32
Sum(Variable 2) = 1 ∗ 10 + 3 ∗ 7 = 31

Fig. 1. Example of a weighted sum calculation for two variables (labeled 1 and 2) based on
two heuristics, minimum domain size and maximum forward degree. Edges from nodes 1 and
2 represent adjacent uninstantiated neighbors. Variable 1 has a domain of size 3, Variable 2 of
size 1.

Weighted sums were obtained by assigning each individual heuristic a weight, then
at each choice point allowing all heuristics to rate the choices (variables) beginning
with a score of 10 as the best rating, 9 for the next-best rating, 8 for the next, and so
forth down to a minimum of 1. Thus, if the current domain sizes were 1, 2, 2, 3, 4, 4,
5, the corresponding ratings for min domain would be 10, 9, 9, 8, 7, 7, 6. The ratings
were then combined for each choice by multiplying the rating for each heuristic by its
weight and adding the products. The variable with the highest weighted sum was the
one chosen (again, ties were broken lexically by choosing the variable with the smallest
integer label).

An example of this process is shown in Figure 1. Here two variables (among others
not shown) are rated by two heuristics, min domain and max forward degree. Min do-
main gives its highest rating to Variable 2 and a lower rating to Variable 1. Max forward
degree gives a higher rating to Variable 1 than to 2. (Note that although the these latter
ratings are not determined completely by the information in the figure, they must be one
apart.) Under the assumption of a weight of 1 for min domain and a weight of 3 for max
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forward degree, the weighted sums for Variables 1 and 2 are 32 and 31, respectively; in
this case, therefore, Variable 1 would be chosen over Variable 2.

3 Heuristic Combinations Based on Quotients and Products

The next two sections present a number of empirical results, some of which are fairly
striking, that constitute a body of findings that must be accounted for by any explanation
of heuristic synergies. At the same time, these results provide a number of hints about
the nature of the variables that may underlie synergistic and non-synergistic effects.

Several examples of quotients and products based on the four simple heuristics de-
scribed in the last section are presented in Table 1. Among them only two exhibit
synergistic effects, and the only marked effect is produced by the well-known do-
main/forward degree heuristic. Interestingly, for this set of problems domain/static de-
gree did not give better performance than static degree alone, in contrast to domain/
forward degree.

Table 1. Results for Products and Quotients

simple heuristic nodes combination nodes
dom 11,334 min dom/stdeg 2076
fd 2625 min dom/fd 1621
bkd 27,391 min dom/bkwd 15081
stdeg 2000 max fd/bkwd 2886

max stdeg * fd 2417
max bkwd * fd 2447

Mean nodes per problem. <50,10,0.184,0.32> problems.
Bold entries show results superior to either heuristic alone.

4 Heuristic Combinations Based on Weighted Sums

Table 2 gives results, in terms of nodes searched, for six “individual” heuristics and
for combinations of these heuristics using the technique of weighted sums described
in Section 2. For these tests, heuristics were given equal weights. These data include
examples of heuristic synergy as well as non-synergy.

Note that in these tests the domain/degree quotients were used as components with
respect to the weighted sums in addition to the four simple heuristics, and that this form
of combination sometimes gave better results than the quotient alone. At the same time,
such combinations were not superior to the best weighted sums based on the simpler
heuristics.

There are a number of significant findings in this table:

• Some combinations do better, in terms of number of search nodes, than any heuris-
tic used by itself. Some do even better than the best heuristic-quotient tested, which
was min domain/forward-degree.

• Simply combining heuristics is not sufficient to obtain synergy; only certain com-
binations are effective.
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• The effectiveness of heuristic combinations does not correlate well with the effec-
tiveness of the individual components.

• The effectiveness of heuristic combinations is not related to the inclusion of any
particular component in and of itself.

• The best results for combinations of two heuristics were as good as the best results
for combinations of more than two heuristics.

Table 2. Selected Results for Weighted Sums

heuristic nodes combination nodes combination nodes
dom 11,334 dm/dg+dm/fd 1800 dom+fd+bkwd 1430
dm/dg 2076 dm/fd+fd 1304 dom+bkwd+stdeg 1822
dm/fd 1621 dom+dm/fd 1890 fd+bkwd+stdeg 1991
fd 2625 dom+fd 1317
bkd 27,391 fd+stdeg 2344 dom+dm/dg+fd+bkwd 1657
stdeg 2000 bkwd+stdeg 1876 dom+dm/dg+fd+stdeg 1374

dom+dm/dg+bkwd+stdeg 1834
dom+dm/dg+stdeg 1654
dom+fd+stdeg 1374 dom+dm/dg+fd+bkd+stdeg 1470

Mean nodes per problem. <50,10,0.184,0.32> problems. Bold entries show
results that are better than any individual heuristic. In these tests component
heuristics were given equal weights.

It is important to note in this connection that weighted sums gave better results than
tie-breaking strategies based on the same heuristics. For comparison, here are results on
the same set of problems with four tie-breaking strategies:

• min domain, ties broken by max forward degree: 3101
• min domain, ties broken by max static degree: 3155
• forward degree, ties broken by min domain: 2239
• static degree, ties broken by min domain: 1606

Naturally, tie-breaking does reduce the size of the search tree in comparison with the
primary heuristic when used alone, but not as much as some heuristic combinations.

Another significant result is that, when combinations of two heuristics showed a
high degree of synergy, equal weights gave better results than unequal weights, and in
these cases performance deteriorated as a function of the difference in weights. This is
shown in Table 3. In cases in which weight combinations did not synergise or synergised
weakly in comparison with the best individual heuristic in the combination, unequal
weights sometimes gave some improvement, although the effect was never marked. An
additional finding is that when weights were unequal, there were sometimes marked
asymmetries or biases in the effect of weighting one heuristic more than the other.
Evidence of this can be seen in each of the three columns of data to the right in the
table. In the other pair (dom+fd), the effects of weights were highly symmetric, so that
the increase in search effort rose in concert with the degree of difference in the weights
regardless of which heuristic was more highly weighted.
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Table 3. Two-Heuristic Combinations with Different Weights

wt ratio dom+fd dom+stdeg stdeg+bkwd fd+stdeg
1:1 1317 1427 1876 2344
1:2 1433 1420 2471 2455
2:1 1405 1620 1852 2235
1:3 1652 1454 3054 2458
3:1 1651 1885 1812 2223
1:5 2033 1557 3960 2458
5:1 2368 2504 1816 2223

Notes. Mean nodes per problem. <50,10,0.184,0.32> problems.
The weight ratio, read from left to right, corresponds to the
weights given to each heuristic each combination, again reading
from left to right. For ease of comparison, the results for equal
weights are repeated in the first row of the table, where cases
of synergy are underlined. Bold entries show results that are
better than the 1:1 condition.

In contrast to the two-heuristic case, when three or more heuristics were used in
combination, the best results were obtained when one of the three was weighted more
heavily than the others. This is shown in Tables 4 and 5. An interesting feature of these
results is that in each group, the best performance occurs when a particular heuristic is
weighted more strongly than the others. For example, in Table 4, for the dom+stdeg+fd
combination, all of the best results occurred when dom was weighted more highly than
the other two heuristics. Similarly, for the second and third combinations, the best re-
sults occurred when stdeg was more highly weighted. In Table 5, all of the best results
(< 1400 nodes) occurred when fd was highly weighted, and all results that bettered the
equal-weight condition involved weighting fd and/or stdeg more highly than the other
heuristics. (Note also that in the one case where weighting one of these heuristics more
strongly did not better the equal-weight condition [third line from bottom in Table 5],
dom and d/deg were also weighted highly.)

The geometric problems had 50 variables, a distance parameter = 0.4 (giving an
average density of around 0.3), |d| = 10, and tightness = 0.18. These were fairly easy
for most, but not all, heuristics, with greater relative differences than those found with
the homogeneous random problems. Nonethess, synergies could be readily obtained
(Table 6). Thus, the effects generalise to at least some structured problems.

Since the main concern of this work is to explain heuristic performance, even if the
methods described here are too expensive to be of practical use, it is of interest to under-
stand why search is made more efficient - in terms of nodes (and constraint checks). In
fact, since the effects shown in Tables 2-5 are rather modest, in these cases the decrease
in search nodes is offset by the expense of calculating weights. In addition, calculating
weighted sums has an inherently higher time complexity than simpler forms of heuris-
tic assessment due to the sorting requirement. However, it is naturally of interest to see
if the effects observed here will scale up. Some preliminary data on this point have
been obtained for large ‘easy’ problems (<200,6,0.054,0.2>). For these problems min
domain/forward degree gave a mean of 3886 search nodes, while the combination of
five heuristics given in Table 2 gave a mean of 1293; in this case there was also a 50%
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reduction in average time. Evidently, then, for some problems the effects can scale up,
so if efficient means can be found for computing weighted sums (or even approxima-
tions), this technique may be of practical importance.

Table 4. Three Heuristics with Different Weights

wt ratio dom+stdeg+fd dom+stdeg+dm/dg dom+stdeg+bkwd
1:1:1 1374 1654 1822
3:1:1 1372 1947 2229
1:3:1 1519 1406 1510
1:1:3 1717 1923 2847
3:3:1 1348 1499 1548
3:1:3 1331 2043 2952
1:3:3 1767 1570 1791

Mean nodes per problem. <50,10,0.184,0.32> problems. Other
conventions as in Table 3.

Table 5. Five Heuristics with Different Weights

wt ratio nodes
dom stdeg dm/dg fd bkwd

1 1 1 1 1 1470
3 1 1 1 1 1635
1 3 1 1 1 1409
1 1 3 1 1 1649
1 1 1 3 1 1332
1 1 1 1 3 1741
3 3 1 1 1 1448
1 3 3 1 1 1481
1 1 3 3 1 1401
1 1 1 3 3 1414
3 1 1 3 1 1343
1 3 1 3 1 1376
3 3 3 1 1 1562
3 3 1 3 1 1342
3 1 3 1 3 1933

<50,10,0.184,0.32> problems. Other conventions
as in Table 3.

5 Factor Analysis of Heuristic Performance

We turn now to the task of determining why search performance is sometimes improved
(and sometimes worsened) by combining heuristics. To this end, a statistical technique
called “factor analysis” was employed.

Factor analysis is a technique for determining whether a set of measurements can be
accounted for by a smaller number of “factors”. Strictly speaking, the notion of a factor
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is solely statistical and refers either to a repackaging of the original patterns of variation
(variance) across individuals and measurements or to a set of linear relations that can
account for the original statistical results. However, since variation must have causes,
this technique if used carefully can yield considerable insight into the causes underly-
ing the measurements obtained. In other words, the factors may be closely related to
underlying variables that are sufficient to account for much of the variance.

Table 6. Results for Weighted Sums with Geometric Problems

combinations
heuristic nodes dom+fd fd+stdeg

ratio nodes ratio nodes
dom 11,222 1:1 399 1:1 570
dm/dg 368 1:3 541 1:3 554
dm/fd 372 3:1 337 3:1 586
fd 642 1:5 552 1:5 555
stdeg 550 5:1 337 5:1 592

Mean nodes per problem. 50-variable geometric problems.
Bold entries show synergies.

The strategy used here was to see, (i) if patterns of variation in search effort could
be ascribed to a relatively few factors in the factor analysis, (ii) whether such factors
could, in turn, be ascribed to any definable causal variables, (iii) whether such variables,
if discovered, could serve to explain the patterns of synergy or non-synergy for heuristic
combinations.

5.1 Resumé of Factor Analysis

The basic factor analysis model can be written as a set of linear relations of the form
(taken from [4]):

zj = aj1F1 + aj2F2 + . . . + ajmFm + djUj (j = 1, 2, . . . , n)

for the jth measure, or

zij = aj1Fi1 + aj2Fi2 + . . . + ajmFim + djUij (j = 1, 2, . . . , n)

for the ith individual on the jth measure, where the Fi are common factors, i.e. factors
that are common to some of the original measures, and Uj is a unique factor associated
with measure j. Usually m << n. The coefficients ajk are often referred to as “load-
ings”. The square of the coefficient of Uj is referred to as the uniqueness, because this
is the portion of the variance unique to measure j, and the coefficient itself is called the
unique factor loading.

Factor analysis is based on a matrix of correlations, derived from a sample of n values
for each measure. For example, if the measurements were scores on cognitive or person-
ality tests, then the correlation between test i and test j would be based on scores from
n individuals. In the present experiments, the individuals are individual problems, and
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each measurement is an efficiency measure, such as search nodes or constraint checks,
for a given heuristic. A factor extraction process is applied, based on a standard method
of approximation. The present work uses the method of maximum likelihood, which
starts from a hypothesis of m common factors and determines maximum-likelihood
estimates of them using the original correlation matrix [5].

Factor analysis methods such as the maximum likelihood method obtain factors that
are uncorrelated with each other. In this case, each ajk above is identical to the correla-
tion coefficient holding between zj and Fk [4].

Once obtained, the factors (which constitute a basis for a space of m dimensions)
can be rotated according to various criteria. Here the varimax rotation was used; this
method tries to eliminate negative loadings while producing maximal loadings on the
smallest possible set of measures.

The interpretation of patterns of differences cannot assume that causal factors be-
have additively, only that patterns of variation can be derived from additive combina-
tions. Factor analysis, therefore, can only identify common sources of variation whose
interpretation requires further investigation.

5.2 Methodology

The software used in these analyses was System R, which was downloaded from

http://www.r-project.org.

In this package, the factanal function was used for the factor analysis.
As already noted, maximum likelihood methods require the number of factors as

input. Since the number of significant factors was not known beforehand, various num-
bers of factors were tested, first, to determine at what point factor extraction ceased to
account for any significant part of the variance, second, to determine which of these fac-
tors gave strong, reliable results. The first kind of test can be taken as setting an upper
bound on the number of useful factors.

If there are other sources of variation than the ones emphasized here, since they are
less important in their effects and less reliable across experiments, they are likely to
be related to features of specific problem sets interacting with vagaries of the search
process. In addition, the possible existence of further factors does not necessarily di-
minish the importance of the ones demonstrated here. (In other words, the explanatory
process may have to be extended, but it will not need to backtrack if the arguments for
the factors described here are cogent.)

5.3 Factor Patterns for CSP Heuristics and Their Interpretation

Table 7 shows selected results for an analysis based on 12 heuristics (described more
fully in [3]). (The heuristics not included in the table were mainly diagnostic pseudo-
heuristics: the FFx series of [6] and a variable ordering heuristic based on maximizing
the summed “promise” across the values of a domain, derived from [7].) On the left
are results from the basic experiment with the same set of random problems used in
the present work. In this case, the analysis indicated that there were two major factors,
but that min domain and max backward degree had idiosyncratic patterns of variation,
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reflected in their high uniqueness. Further experiments showed that the latter were due
to random choices made at the top of the search tree; this occurs because for these
heuristics there is no distinction among variables at the start of search. The results of
one of these experiments are shown on the right hand side of the table. In this test, for
each measurement the first three choices were in lexical order; thereafter, a particular
heuristic was used. In this experiment, therefore, the effect of initial random selections
was equalized. As a result, all heuristics had moderate to high loadings on two major
factors, and the proportion of the total variance accounted for by these two factors
was 0.95.

Table 7. Factor Analysis for CSP heuristics

heuristic heuristic alone 3 lexical, heuristic
nodes factor 1 factor 2 unique nodes factor 1 factor 2 unique

dom 11334 0.146 0.281 0.900 19587 0.804 0.565 0.034
fd 2625 0.443 0.873 0.042 9551 0.602 0.796 0.005
bkd 27391 0.107 0.224 0.938 37536 0.708 0.488 0.261
stdeg 2000 0.486 0.835 0.067 7980 0.648 0.752 0.015
dm/dg 2076 0.913 0.394 0.011 7712 0.752 0.652 0.010
dm/fd 1621 0.909 0.404 0.010 6473 0.744 0.660 0.011
dg*fd 2418 0.436 0.897 0.005 8567 0.626 0.775 0.008
Notes. <50,10,0.184,0.32> problems. Loadings ≥ 0.7 are shown in bold.

Various lines of evidence suggest the following interpretation of these factors (dis-
cussed at length in [3] [8]). One factor appears to be based on buildup of contention
that results in eventual failure; heuristics such as min domain and backward degree
load highly on it (when confounding variables are removed), as well as the FF series
of [6]. The other factor appears to emphasize failure among future variables, so heuris-
tics such as max forward degree and other look-ahead heuristics load highly on it. These
have been tentatively designated as “contention” and “look-ahead” factors, respectively.
It is of interest to note that both act as fail-first strategies, since the same factor pattern
was found for problems with the same parameters that had no solutions. It is also impor-
tant to bear in mind that the factor analysis guarantees that the factors are uncorrelated,
which is a further argument for positing two independent actions underlying the differ-
ent heuristics.

6 Factor Analysis Factors and Heuristic Synergies

6.1 Synergies with MAC

If we reconsider the results of Tables 1 and 2 in the light of this analysis, we see that suc-
cessful weighted sums were composed of heuristics that load on each of the two major
factors. This leads to a simple rule for predicting synergy or the lack of it: paired heuris-
tics that load most heavily on separate factors will synergise, while pairs of heuristics
that load most heavily on the same factor will not. This rule was verified in more ex-
tensive testing. For example, for weighted sums based on pairs of heuristics with equal
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weights, this rule was verified for all fifteen pairings of the original set of six heuristics
(Table 8).

Table 8. Predicted and Actual Synergies for Equal-Weight Pairs

heuristics first second compound
dom+fd 11,334 2625 1317
dom+bkwd 11,334 27,391 12,521
dom+stdg 11,334 2000 1427
dom+dm/dg 11,334 2076 2327
dom+dm/fd 11,334 1621 1890
fd+bkwd 2625 27,391 1962
fd+stdg 2625 2000 2344
fd+dm/dg 2625 2076 1369
fd+dm/fd 2625 1621 1304
bkwd+stdg 27,391 2000 1876
bkwd+dm/dg 27,391 2076 2436
bkwd+dm/fd 27,391 1621 1861
stdg+dm/dg 2000 2076 1527
stdg+dm/fd 2000 1621 1386
dm/dg+dm/fd 2076 1621 1800
Mean nodes per problem. <50,10,0.184,0.32> problems. Italicised
entries are predicted synergy based on factor loadings. Bold entries
show actual synergistic effects.

This rule is also consistent with the two cases of synergy among the products and
quotients (cf. Table 2). However, for quotients there appears to be a further (reason-
able) condition: that both the numerator and denominator favor selections consistent
with those favored by the original heuristic. This consideration accounts for the failure
to find synergy with the max forward degree/backward degree heuristic, although the
components load most heavily on different factors. In this case, choosing according to
this heuristic will favor variables with larger forward degrees, which accords with this
component heuristic, but it will also favor variables with smaller backward degrees,
which is counter to this component heuristic.

Evidence that the balance between the two factors is important can be found in
Tables 3-5. This, in fact, seems to explain both the decline in quality for the two-
heuristic combinations when the weights are made unequal (Table 3) and the distin-
guished heuristic phenomenon that was noted in the data shown in Table 4. In each
case, the single heuristic that loaded on a different factor from the other two heuristics
was the one that needed to be weighted more strongly. A similar phenomenon seems to
be involved in the pattern of results shown in Table 5.

6.2 Synergies with FC

Striking instances of synergy can be obtained by using forward checking instead of
MAC. For forward checking with random CSPs, it has been found that look-ahead
heuristics show a marked fall-off in efficiency. Naturally, there is an increase in number
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of search nodes for all heuristics in comparison with the results for MAC, but while the
increase is by an order of magnitude for the contention heuristics, it is by three to four
orders of magnitude for the look-ahead heuristics, as shown in Table 9.

Table 9. Performance of Forward Checking

heuristic nodes
min domain 212,389
min dom/stdeg 32,336
min dom/fwddeg 31,138
max forward degree 38,568,409
max static degree 2,450,958
Notes. Basic heuristics and selected quotients.
Means for <50,10,0.184,0.32> problems.

Despite this drastic loss in efficiency for one class of heuristics, the rule of combina-
tion presented above continues to hold, as shown in Table 10. Thus, despite the fact that
for these problems forward checking with max forward degree required more than 107

nodes on average, when this heuristic was combined with min domain, it sometimes
produced an order-of-magnitude improvement with respect to the latter, which was the
best individual heuristic in this combination. In this case synergy based on weighted
sums of paired heuristics is most marked when the weights are unequal so as to favor
the contention heuristic.

Table 10. Two-Heuristic Combinations with Forward Checking

wt ratio dom+fd dom+stdeg dm/dg+fd
1:1 234,936 125,850 120,489
3:1 37,041 39,895 33,884
5:1 38,006 40,260 31,586
7:1 45,062 45,996 31,252

Notes. Mean nodes per problem. <50,10,
0.184,0.32> problems.

6.3 Assessment of Weighted-Sum Strategies in Terms of Heuristic Policies

A more detailed analysis of heuristic quality can be made by assessing heuristic per-
formance in terms of adherence to optimal policies. In addition to the overall policy
of minimizing effort, there are two basic sub-policies, depending on whether search is
currently on a solution path or in an insoluble subtree. In the former case, the optimal
policy is to maximize the likelihood of remaining on the solution path (“promise” pol-
icy); in the latter, the optimal policy is to find a refutation of the original mistake as
quickly as possible (“fail-first” policy).

Although the two policies cannot be realized in practice (nor can the policy of finding
a solution after a minimum number of search nodes), we can still measure adherence
to these policies and thereby compare heuristics in these terms. For the promise policy,
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we have an absolute measure when probabilities can be reasonably assigned to alter-
native assignments, obtained by summing probability products at each level of search
(described in [9]); for the fail-first policy, we can obtain a relative measure by averag-
ing the sizes of all the insoluble subtrees (cf. [10]). The latter measure can be obtained
for either the entire search tree or the part of the tree explored before finding the first
solution. Although the promise measure necessarily involves the entire search tree, a
rough measure can be obtained for the part of the tree explored by counting the number
of “mistakes” (the number of times an insoluble subtree was entered).

For measures of overall efficiency we use, as before, the number of search nodes. We
also include the number of failures, which has been suggested recently as an alternative
measure of overall performance [11].

Table 11 gives data for promise and fail-first measures, together with measures of
overall efficiency, and some descriptive measures of heuristic performance. This analy-
sis involved max forward degree, min domain and the weighted sum of the two (with
equal weights; cf. Table 2). These data indicate that this heuristic combination shows
better adherence to both the fail-first and promise policies than the component heuristics
acting alone.

The descriptive measures suggest that the heuristic combination tends to compro-
mise on the beneficial effects of the two components, since the measures for the former
always fall between those for the latter. This is particularly interesting in connection
with the consistent superiority demonstrated in the quality measures.

7 Limits to Synergy?

Now that some understanding of heuristic combination has been obtained, an important
question is whether this knowledge can be used to even greater effect than in the tests
reported in earlier sections. Two kinds of strategies have been tried, using weighted
sums. The first is based on the finding that if results for weighted sums are added to the
factor analysis, they are usually found to load more heavily on one factor than the other.
Hence, according to the rule for combining heuristics to produce synergies, it should
be possible by appropriate weighting to combine a given weighted sum that loads most
heavily on one factor with a basic heuristic (or weighted sum) that loads most heavily
on the other. The second strategy was to combine more powerful heuristics that show
differences in loadings, to see if synergistic effects can be obtained that are greater than
those found by combining simpler heuristics.

Although heuristic combinations tend to load more heavily on one factor than an-
other (in most cases on the contention factor), it was not possible to combine them with
other heuristics to obtain greater synergy. This finding was, in fact, anticipated in the
results shown in Tables 2-5.

The work with more advanced heuristics is still in its preliminary stages. To date,
only one such combination has been tested that involved the min domain/weighted-
degree heuristic of [12] and the min kappa heuristic of [13]. These were chosen for
combination because for the 50-variable problems the former loaded more heavily on
the contention factor while the latter was more heavily correlated with the look-ahead
factor. When used individually, the mean nodes searched was 1575 for min kappa and
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1517 for min domain/weighted-degree. Both are superior to the best single heuristic
or quotient in the previous tests. When these were combined into a weighted sum, with
equal weight for each heuristic, the mean nodes was 1309. Therefore, synergy did occur
as predicted, but the result was no better than the best results in the earlier experiments.

Table 11. Policy-Adherence and Descriptive Measures for Heuristics and Weighted Sum

measure max forward degree min domain dom+fd
efficiency measures

nodes 2625 11334 1317
failures 2060 5419 844

promise measures
prom 0.00037 0.00027 0.00060
no. mistakes 231.2 407.5 150.5

fail-first measure
mistake-tree size 139.5 844.9 102.2

descriptive measures
|d| of variable chosen 4.1 1.9 2.6
fwd-deg of variable chosen 9.7 7.2 9.1
fail-depth 5.4 12.0 6.8
Note. Means for <50,10,0.184,0.32> problems.

8 Conclusions

This paper presents a study of the effects of combining heuristics. It begins by present-
ing a collection of data showing significant cases of synergy, as well as striking patterns
of synergistic and non-synergistic effects. Some of these effects are counter-intuitive,
since the heuristics in a synergistic combination may result in mediocre or even dread-
ful performance when used alone. The work also shows that weighted sums are in fact
quite good at improving search performance by reducing the amount of search; this
must be because this strategy improves the quality of variable selection.

Some insight was gained into the basis for this improvement, using the recent dis-
covery that there are two basic types of heuristic action: here labeled “contention” and
“look-ahead” [3]. This, in turn, led to the formulation of a simple rule for predicting
success on the basis of the factor loadings of component heuristics. The success of this
rule suggests that heuristic combinations work to improve search performance by bal-
ancing the two basic actions. Conversely, when the two are not well-balanced, as in
some of the cases in Tables 1-6, performance is not improved and can even deteriorate
in comparison with the component heuristics. Preliminary analysis of the features of
search based on effective combinations supports the idea these hypotheses.

This work raises a number of important questions to address in further research:

• How general are the present synergistic principles with respect to problem classes?
(So far they seem quite general with respect to algorithms.)

• To what degree are more advanced heuristics managing to balance the two basic
heuristic factors? Is this why they are effective?
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• Are there other principles underlying improvements in heuristic performance, such
as the degree to which alternative choices can be discriminated based on different
amounts of information?

• How does the kind of balancing in evidence here serve to restrict search?
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Abstract. CSP search algorithms are exponential in the worst-case. A
trivial upper bound on the time complexity of CSP search algorithms
is O∗(dn), where n and d are the number of variables and the maximal
domain size of the underlying CSP, respectively.

In this paper we show that a combination of heuristic methods of con-
straint solving can reduce the time complexity. In particular, we prove
that the FC-CBJ algorithm combined with the fail-first variable order-
ing heuristic (FF) achieves time complexity of O∗((d − 1)n), where n
and d are the number of variables and the maximal domain size of the
given CSP, respectively. Furthermore, we show that the combination is
essential because neither FC-CBJ alone nor FC with FF achieve the
above complexity. The proposed results are interesting because they es-
tablish connection between theoretical and practical approaches to CSP
research.

1 Introduction

CSP search algorithms are exponential in the worst-case. An upper bound on
the time complexity of CSP search algorithms is O∗(dn), where n and d are the
number of variables and maximal domain size, respectively (we use O∗ nota-
tion to suppress polynomial factors in the complexity expression). This upper
bound is obtained by taking into account that a search algorithm assigns n vari-
ables and for every variable, the branching factor is at most d. Thus the O∗(dn)
upper bound is not ”tight”. On the other hand, in the constraint satisfaction
area there are many sophisticated pruning techniques. An interesting question
is, whether a combination of heuristic pruning methods can reduce the time
complexity.

In this paper we answer the question affirmatively. In particular, we show that
the FC-CBJ algorithm [5] combined with the fail-first variable ordering heuris-
tic (FF) [4] has the worst-case time complexity of O∗((d − 1)n). Furthermore,
we show that the use of both the conflict-directed backjumping and the FF are
essential for reducing complexity by demonstrating that FC-CBJ with no spec-
ified ordering heuristic and FC with FF both have a complexity greater than
O∗((d− 1)n).

We do not claim that the combination of FC-CBJ with the FF achieve the best
time complexity for constraint satisfaction problem. In fact, there are methods

B. Hnich et al. (Eds.): CSCLP 2005, LNAI 3978, pp. 88–99, 2006.
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that solve CSP much more efficiently [3]. The main contribution of the present
paper is providing evidence that the complexity of CSP solving can be improved
by using heuristic methods that were designed for the purely ”practical” purpose
of improving the runtime of CSP solving on real-world instances.

The results proven in this paper also provide theoretical insight into the
strength of ”most constrained first” ordering heuristics studied in [2]. The fact
that FF improves the complexity of FC-CBJ while leaves the complexity of FC
unchanged indicates that the strength of an ordering heuristic depends on the
underlying search algorithm.

The rest of the paper is organized as follows. Section 2 contains the relevant
background. Section 3 is the central in the paper. In this section we prove that
FC-CBJ with FF has worst-case complexity of O∗((d−1)n). In Section 4 we show
that neither FC with the FF nor FC-CBJ do not achieve the above complexity.
Section 5 concludes the paper.

2 Preliminaries

2.1 Notations and Terminology

The present paper considers only binary CSPs. A CSP Z consists of three com-
ponents. The first component is a set of variables. Every variable has a domain
of values. We denote a value val of a variable v by 〈v, val〉. The set of domains
of variables comprises the second component of Z. The constraint between vari-
ables u and v is a subset of the Cartesian product of the domains of u and v.
A pair of values (〈u, val1〉, 〈v, val2〉) is compatible if it belongs to the constraint
between u and v. Otherwise the values are incompatible (conflicting). The set
of all constraints comprises the third part of Z.

A set P of values of different variables is consistent (satisfies all the con-
straints) if all the values of P are mutually compatible. In this case, we call P a
partial solution of Z. If we let 〈u, val〉 ∈ P , we say that P assigns u. Accordingly,
〈u, val〉 is the assignment of u in P . Let V ′ be a subset of the set of variables
assigned by P . We denote by P (V ′) the subset of P that assigns V ′. If P assigns
all the variables, it is a solution of P . The task of a CSP search algorithm is to
find a solution of Z or to report that no solution exists.

Generally, not every partial solution is a subset of a full solution. If a par-
tial solution P is not a subset of any solution, it is called a nogood. Note that
sometimes in the literature, the notion of nogood has a broader meaning in
that it includes also a set of assignments with inner conflicts. In the present
work a nogood is a specific case of a partial solution, that is, a consistent set of
assignments.

2.2 The FC, FC-CBJ Algorithms, and FF Ordering Heuristic

Forward Checking algorithm (FC) [5] is a CSP search algorithm based on enu-
meration of partial solutions. It starts from the empty partial solution. In every
iteration, FC selects an unassigned variable, assigns it with a value and appends
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to the current partial solution. The characteristic feature of FC is that whenever
new assignment is added to the current partial solutions, the values of unas-
signed variables that are incompatible with the new assignment are temporarily
removed from the domains of the variables. Therefore, when we consider some
state that occurs during execution of FC, we frequently refer to the current
domain of some variable v, having in mind the subset of values that were not
removed from the domain of v.

If FC assigns all the variables of the underlying CSP, it returns a solution.
However, during the iterative enlargement of the current partial solution, the
current domain of some unassigned variable might be emptied. In this case, FC
backtracks, that is, discards the last assignment of the current partial solution
and replaces it by another assignment of the same variable. Note that when
an assignment is discarded, all the values, removed because of incompatibility
with the assignment, are restored in their current domains. It may also happen
that FC cannot replace the discarded assignment by another one. In this case it
backtracks again. Finally, it might happen that FC tries to backtrack, but the
current partial solution is empty. In this case, FC reports insolubility.

Fig. 1. CSP used for illustration of work of search algorithms

We demonstrate a possible scenario of execution of FC on the CSP shown in
Figure 1, where ellipses represent variables, black circles represent values, arcs
between values represent conflicts. FC starts from the empty current partial
solution. Then 〈v1, 1〉 is appended to the current partial solution and 〈v4, 1〉 is
removed because of incompatibility with 〈v1, 1〉. The next assignment appended
to the current partial solution is 〈v2, 1〉; the assignment causes removal of 〈v5, 1〉.
The next appended assignment is 〈v3, 1〉. Then FC adds to the current partial
solution assignment 〈v4, 2〉; as a result, 〈v5, 2〉 is removed, the domain of v5 is
emptied and FC backtracks.

Performing backtrack, FC discards 〈v4, 2〉 and removes it from the current
domain of v4. As well, 〈v5, 2〉 is restored in the current domain of v5. The back-
tracking empties the domain of v4, hence FC backtracks again, discarding 〈v3, 1〉
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and restoring 〈v4, 2〉. Note that 〈v4, 1〉 is not restored because it was removed by
incompatibility with 〈v1, 1〉, which still belongs to the current partial solution
Then 〈v3, 2〉 is appended to the current partial solution. After that FC appends
again 〈v4, 2〉 which causes three consecutive backtracks discarding assignments
〈v4, 2〉, 〈v3, 2〉, and 〈v2, 1〉. Then FC appends 〈v2, 2〉 to the current partial so-
lution. The assignment 〈v3, 1〉 appended next is discarded after a number of
iterations. After appending of assignments 〈v3, 2〉, 〈v4, 1〉 and 〈v5, 1〉, FC obtains
a full solution, which is returned.

States of a search algorithm. The execution of a CSP search algorithm can be
represented as a sequence of atomic operations of updating of the current par-
tial solution (addition or removal of assignments) accompanied by appropriate
updating of the maintained data structures in order to preserve consistency. The
information recorded in the data structures before the beginning of the execution
or after performing an atomic operation constitutes a state of a search algorithm.
Thus a sequence of states is another possible representation of a search algorithm.
We use this representation in the present paper, in order to prove properties of
the analyzed algorithms.

Forward Checking with Conflict-directed Backjumping (FC-CBJ) is a modi-
fication of FC that can backtrack more than 1 step backwards (backjump). The
completeness of enumeration is preserved by maintaining conflict sets of vari-
ables. In a given state of FC-CBJ, the conflict set of a variable v, denoted by
conf(v), contains all variables whose assignments in the current partial solution
are ”culprit” for removing values from the current domain of v. In particular,
if P is the current partial solution then every removed value 〈v, val〉 of v is
incompatible with P (conf(v)) or P (conf(v)) ∪ {〈v, val〉} is a nogood.

The detailed description of FC-CBJ is quite technical and long, hence we list
only those features of the algorithm that are relevant to the theorems we are
going to prove.

– Initially all conflict sets are empty.
– Whenever a value 〈u, val〉 is appended to the current partial solution and a

value of an unassigned variable v is removed as a result of incompatibility
with 〈u, val〉, u is added to conf(v).

– Whenever the empty domain of a variable v causes backtrack, FC-CBJ back-
jumps to the last assigned variable u that appears in conf(v) and discards
the assignment of this variable. The assignments of variables that were ap-
pended to the current partial solution after the assignment of u are just
canceled as if they were not performed at all (of course, with the restoring of
values removed by these assignments). Note that removing an assignment of
a variable from the current partial solution, FC-CBJ removes appearances
of this variable from all conflict sets.

– Whenever the empty current domain of a variable v causes backtrack and
the backtrack process discards the assignment of a variable u, conf(u) is set
to conf(u) ∪ conf(v) \ {u}.
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Assume that the CSP illustrated on Figure 1 is processed by FC-CBJ. In
the beginning, the execution is similar to that of FC with the only difference
that whenever new assignments are appended to the current partial solution the
conflict sets of the corresponding variables are updated. In particular adding
assignment 〈v1, 1〉 causes adding v1 to conf(v4), v2 is added to conf(v5) as a
result of appending of 〈v2, 1〉. Note that the assignment 〈v3, 1〉 does not cause
updating of conflict sets. Finally the assignment 〈v4, 5〉 causes adding v4 to
conf(v5). The first backtrack of FC-CBJ is caused by the empty domain of v5.
At the time of the backtrack, conf(v5) = {v2, v4}, hence FC-CBJ jumps to v4.
Note that before the backtrack, conf(v4) = {v1}. After backtrack the set is
updated to {v1, v2} as a result of union with conf(v5) and removing of v4. Also,
v4 is removed from conf(v5).

The second backtrack occurs because of emptying of the domain of v4. Because
the last variable in conf(v4) is v2, FC-CBJ jumps over v3 and discards the
assignment of v2. Thus FC-CBJ avoids processing of an unnecessary assignment
〈v3, 2〉 performed by FC after the second backtrack.

CSP search algorithms do not specify explicitly the order of selection of vari-
ables to be assigned. This job is done by ordering heuristics. One of the simplest
and the most successful ordering heuristics is called Fail-First (FF) [4]. Every
time when a new variable must be assigned, FF selects a variable with the small-
est size of the current domain. The time complexity of FF is linear in the number
of unassigned variables. The implementation of FF requires maintaining array
of domain sizes of variables which is updated dynamically when values are re-
moved or restored. All what FF does is selection of the minimal element among
the entries of the array that correspond to the domains of unassigned variables.

Consider the execution of FC with FF on the CSP of Figure 1, assuming that
in case of existence of two or more variables with the smallest domain size, one
is selected according to the lexicographic ordering.

Initially, the current domains of all the variables are of equal size, so v1 is as-
signed with 1. After removing of 〈v4, 1〉 as a result of the assignment, v4 becomes
the variable with the smallest domain size, so 〈v4, 2〉, the only remaining value is
appended to the current partial solution. The value 〈v5, 2〉 is removed because of
the incompatibility with 〈v4, 2〉, hence v5 becomes the variable with the smallest
domain size and the assignment 〈v5, 1〉 is added to the current partial solution.
The values 〈v2, 1〉 and 〈v3, 1〉 are incompatible with 〈v5, 1〉, hence they are re-
moved from the current domain of v2 and v3. The next two iterations append
to the current partial solution 〈v2, 2〉 and 〈v3, 2〉. The obtained full solution is
returned after that.

The above example demonstrates the strength of FF, because it allows to
avoid backtracks during processing of the given CSP.

2.3 Complexity of Backtrack Algorithms

All complete CSP search algorithms (those that return a solution if one exists or re-
port insolubility otherwise) have exponential time-complexity. Discussing aspects
related to the complexity of backtracking algorithms, we follow two agreements:
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– We express the time-complexity (upper bound) by O∗ notation [7], which
suppresses the polynomial factor. For example, instead of O(n2 ∗ 2n), we
write O∗(2n). Note, that for a constant d > 1 O∗((d − 1)n) is smaller than
O∗(dn) because O∗(dn) = O∗((d/d− 1)n ∗ (d− 1)n), where (d/(d− 1))n is a
growing exponential function that cannot be suppressed by the O∗ notation.
On the other hand, given constants d and k, O∗(dn+k) is the same as O∗(dn)
because O∗(dn+k) = O∗(dk ∗ dn), where dk can be suppressed as a constant.

– We express the time complexity of a CSP search algorithm by the number
of partial solutions generated by the algorithm. This is a valid representa-
tion because the time complexity can be represented as the number of par-
tial solutions multiplied by a polynomial factor which is ignored by the O∗

notation.

The worst-case complexity of FC and FC-CBJ when applied to a CSP with
n variables and maximum domain size d is widely considered to be O∗(dn).

The Ω∗-notation is used to express the lower bound on the complexity of
exponential algorithms. The constant and polynomial factors are suppressed
analogously to the O∗-notation.

3 FC-CBJ Combined with FF Has O∗((d − 1)n)
Complexity

In this section we will show that the use of heuristic techniques can decrease
the complexity of a search algorithm. In particular we prove that the FC-CBJ
algorithm [5] combined with the FF heuristic [4] has a worst-case complexity of
O∗((d−1)n), where n and d are the number of variables and the maximal domain
size, respectively. During the proof, we extensively use the notion of maximal
partial solution.

Definition 1. Let P be a partial solution explored by a search algorithm during
solving a CSP Z. Then P is maximal if it is not a subset of any other partial
solution visited by the algorithm during solving Z.

We now prove a theorem that states an upper bound on the number of maximal
solutions explored by FC-CBJ with FF. The overall complexity of FC-CBJ with
FF will follow from this result.

Theorem 1. FC-CBJ with FF applied to a CSP Z with n ≥ 2 variables and
maximal domain size d explores at most M(n) = d∗Σn−2

i=0 (d−1)i maximal partial
solutions.

In order to prove the theorem, we need an additional lemma.

Lemma 1. Let Z be a CSP with the maximal domain size d. Consider a state
S of FC-CBJ that occurs during processing of Z. Let P be the current partial
solution maintained by FC-CBJ in this state. Assume that in P is not empty
and that the current domain size of every unassigned variable is d. Let Z ′ be a
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CSP created by the current domains of unassigned variables. Assume that Z ′ is
insoluble. Then, after visiting state S, the execution of FC-CBJ is continued as
follows: FC-CBJ detects insolubility of Z ′, immediately discards all the values of
P , reports insolubility, and stops.

Proof. Considering that d is the maximum possible domain size, we infer that
the current domains of the unassigned variables are the same as their initial
domains. It follows that all values of the original domains of the unassigned
variables are compatible with all values of P . Consequently, the conflict sets of
all the unassigned variables are empty.

Observe that when processing Z ′, a variable assigned by P does not appear in
any conflict set of a variable of Z ′. This observation can be verified by induction
on the sequence of events updating the conflict sets of Z ′. Note that the obser-
vation holds before FC-CBJ starts to process Z ′, because all the conflict sets
are empty (see the argumentation in the previous paragraph). Assuming that
the observation holds for the first k events, let us consider the k + 1-th one. As-
sume that v is the variable whose conflict set is updated. If this updating results
in insertion of the currently assigned variable then the variable being inserted
belongs to Z ′ which is not assigned by P . Otherwise, conf(v) is united with
the conflict set of another variable u of Z ′. However, conf(u) does not contain
variables assigned by P by the induction assumption.

If Z ′ is insoluble, FC-CBJ will eventually discard P . This means that FC-CBJ
will arrive at a state in which the current domain of a variable v of Z ′ is empty
and conf(v) does not contain any variable of Z ′. On the other hand, conf(v)
will not contain any variable assigned by P . That is, the conflict set of v will
be empty. Consequently, FC-CBJ will jump “over” all the assigned variables,
report insolubility of Z, and stop. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We prove the theorem by induction on n. For the basic
case assume that n = 2. Let v1 and v2 be the variables of Z and assume that v1
is assigned first. Consider the situation that occurs when v1 is assigned with a
value 〈v1, val〉. If the value is compatible with at least one value in the domain of
v2, FC-CBJ returns a solution. Otherwise, it instantiates 〈v1, val〉 with another
value of v1 or reports insolubility if all values of v1 have been explored. Thus,
every value of v1 participates in at most one partial solution. Keeping in mind
that there are at most d such values, we get that at most d partial solutions are
explored. Observe that M(2) = d. That is, the theorem holds for n = 2.

Assume that n > 2 and that the theorem holds for all CSPs having less than
n variables. We consider two possible scenarios of execution of FC-CBJ.

According to the first scenario whenever the current partial solution is not
empty (at least one variable has been already instantiated), FC-CBJ combined
with FF selects for instantiation a variable with the current domain size smaller
than d. Then FC-CBJ explores a search tree in which at most d edges leave the
root node and at most d− 1 edges leave any other node.
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Note that when FC-CBJ has assigned all the variables but one, it does not
execute branching on the last variable. If the domain of the last variable is not
empty, FC-CBJ takes any available value and returns a full solution. Otherwise,
it backtracks. It follows that in the search tree explored by FC-CBJ only the first
n − 1 levels can contain nodes with two or more leaving edges. The branching
factor on the first level is d, but the branching factor of a node at any other of
n− 2 remaining levels is d− 1. Consequently, the number of leaves of the search
tree is at most d ∗ (d− 1)n−2. Taking into account that the leaves of the search
tree correspond to the maximal partial solutions, we see that in the considered
case, FC-CBJ explores at most d∗ (d−1)n−2 ≤ M(n) maximal partial solutions.
Thus, the theorem holds in the case of the first scenario.

If the first scenario does not occur then FC-CBJ, having at least one variable
instantiated, selects for assignment a variable with the current domain size d.
Consider the first time when such a selection occurs and denote by P the current
partial solution maintained by FC-CBJ in the considered state. Denote by Z ′

the CSP created by the current domains of variables that are no assigned by P .
Proceeding the execution, FC-CBJ solves Z ′. If Z ′ is soluble then FC-CBJ finds
a solution of Z ′, returns its union with P , and stops.

The case when Z ′ is insoluble is the main point in the proof of the
theorem. Note that FC-CBJ uses FF. If a variable with the current domain
size d is selected, the current domain sizes of the other unassigned variables are
at least d. On the other hand, d is the maximal possible domain size, hence
the current domain sizes of the other variables are exactly d. By Lemma 1,
FC-CBJ stops after detecting insolubility of Z ′. ( Note that both FC-CBJ and
FF contributed to the validity of this claim. The contribution of FF is ensuring
that the current domains of all the unassigned variables are exactly d. The
contribution of FC-CBJ is explained in the proof of Lemma 1. Note also that
Lemma 1 has been proven for the general case of FC-CBJ, hence it holds, in
particular, for FC-CBJ combined with FF.)

Thus we have shown that whenever FC-CBJ selects a variable with the current
domain size d given that the current partial solution is non-empty, the algorithm
always stops when the solving of Z ′ is finished.

The number of maximal partial solutions visited by FC-CBJ in this case
equals the number of maximal partial solutions explored before visiting P plus
the number of maximal partial solution explored after visiting P .

Recall that we consider the first time during the execution when a variable
with the current domain size d is selected given that the current partial solution
is not empty. Therefore, before arriving to the considered state, FC-CBJ explores
at most d∗(d−1)n−2 maximal partial solutions, according to the argumentation
provided for the first scenario.

All maximal partial solutions explored after visiting P are visited during solv-
ing of Z ′. Therefore every maximal partial solution P1 visited after exploring of
P can be represented as P1 = P ∪ P2, where P2 is a maximal partial solution
of Z ′ (non-maximality of P2 contradicts maximality of P1). Thus the number
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of maximal partial solutions explored after visiting of P equals the number of
maximal partial solutions explored by FC-CBJ during solving of Z ′.

Considering that P is not empty, it follows that Z ′ contains at most n − 1
variables. By the induction assumption, FC-CBJ explores at most M(n − 1)
of maximal partial solutions during solving of Z ′. Thus the overall number of
maximal partial solutions is at most d ∗ (d − 1)n−2 + M(n − 1) = M(n), what
completes the proof for the second scenario. �

Corollary 1. FC-CBJ with FF explores O∗((d−1)n) maximal partial solutions.

Proof. By definition of M(n), M(n) ≤ dn(d− 1)n−2 = O∗((d− 1)n). �

We have shown that the number of maximal partial solutions explored by FC-
CBJ with FF is bounded by O∗((d − 1)n). Clearly, every partial solution is a
subset of some maximal partial solution. On the other hand, every maximal
partial solution serves as a subset of at most n partial solutions. Indeed, every
partial solution generated by FC-CBJ corresponds to a node of the search tree
explored by FC-CBJ. Note that subsets of the given partial solution P corre-
spond to the ancestors of P in the search tree. Taking into account that every
path from the root to a leaf in the search tree has a length of at most n, we
infer that P cannot have more than n ancestors. Consequently, the number of
partial solutions explored by FC-CBJ is at most the number of maximal partial
solutions multiplied by n. Thus we have proved the following theorem.

Theorem 2. The complexity of FC-CBJ with the fail-first ordering heuristic is
O∗((d− 1)n).

To understand the strength of the theorem, consider the following corollary.

Corollary 2. FC-CBJ with FF efficiently solves any CSP with at most two
values in every domain.

Proof. If a CSP contains at most two values in every domain then d = 2.
Substituting d = 2 to the statement of Theorem 2, we get that FC-CBJ with FF
solves such a CSP in O∗(1n) with is a polynomial according to the definition of
O∗ notation. �

The collection of CSPs with at most 2 values in every domain is a well-known
polynomially-solvable CSP class. According to Corollary 2, FC-CBJ recognizes
CSPs from this class without any additional ”domain-dependent” procedures.

4 Both FC with FF and FC-CBJ Have a Complexity
Greater Than O∗((d − 1)n)

It may seem that a combination of FC-CBJ with FF is far too complex to
achieve the purpose of reducing complexity. We will show that this is not so.
In particular, we will show that both FC (without CBJ) with FF and FC-CBJ
alone have a complexity greater than O∗((d− 1)n).
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Let us start by the analyzing of the complexity of FC with FF. We prove that
for every n there is a CSP Z with n + 1 variables and d values in every domain
(d is an arbitrary number) such that in order to solve Z, the algorithm generates
at least dn partial solutions. Let v1, . . . , vn+1 be the variables of the considered
CSP. Every value of vn conflicts with every value of vn+1. There are no other
conflicts in the CSP. This CSP is illustrated in Figure 2.

Fig. 2. A hard CSP for FC with FF

We assume that if during the search there are two or more variables with the
smallest current domain size, FC with FF will select the first of them according to
lexicographic ordering. This is a valid assumption, because we are going to refute
the claim that FC with FF has a better complexity than O∗(dn). It is implied by
the claim that if there are two or more variables with the smallest current domain
size, these variables can be ordered arbitrarily. Therefore, to refute the claim, it
is sufficient to show that FC combined with FF and a particular ordering in the
case of existence of two or more variables with the smallest domain size has a
complexity greater than O∗((d− 1)n).

Observe that the source of insolubility of Z is that vn and vn+1 have no
pair of compatible values. However, FC with the heuristic described above will
not be able to recognize the insolubility source, because it will assign first v1,
then v2, and so on. Note that to refute Z, the algorithm will have to explore
all the partial solutions assigning variables v1, . . . , vn. Clearly, there are at least
dn such partial solutions. Denoting n + 1 by m we obtain that for every m
there is a CSP with m variables such that FC with FF explores at least dm−1

partial solutions solving this CSP. That is, the complexity of FC with FF is
Ω∗(dm−1) = Ω∗(1/d ∗ dm) = Ω∗(dm) as claimed.

Let us now analyze the complexity of FC-CBJ. Note that if some CSP search
algorithm has a complexity of O∗((d−1)n) then for any value of d, the algorithm
explores O∗((d−1)n) partial solutions. Consequently, to prove that an algorithm
has a greater complexity, it is enough to show that the above does not happen
for at least one d. This is the way we show that FC-CBJ alone has a greater
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complexity than O∗((d − 1)n). Note that we are free to choose an ordering
heuristic for FC-CBJ because FC-CBJ does not specify any particular ordering
heuristic.

Let Z be a CSP with n+1 variables v1, . . . vn+1 . The domain of each variable
contains n values, say, val1, . . . , valn. The only conflicts of Z are found be-
tween the values of vn+1 and the values of other variables. In particular, a value
〈vn+1, vali〉 conflicts with all the values of variable vi. The CSP is illustrated in
Figure 3. We assume that FC-CBJ orders variables lexicographically.

Fig. 3. A hard CSP for FC-CBJ

The source of insolubility of Z is that every value of vn+1 conflicts with the
domain of some variable from v1, . . . , vn. However, FC-CBJ is unable to recognize
the source of insolubility because it assigns vn+1 last, according to the specified
ordering heuristic. Observe that all maximal partial solutions generated by FC-
CBJ are of the form {〈v1, vali1 , 〉, . . . , 〈vn, valin〉}, because no assignment to a
proper subset of {v1, . . . , vn} can discard all the values of vn+1. Clearly, there are
nn partial solutions of the above form and we shall show that FC-CBJ explores
all of them, which proves that for any given n, there is d for which there is a
class of CSPs that cannot be solved by FC-CBJ in O∗((d− 1)n).

To show that FC-CBJ explores all the partial solutions of the form
{〈v1, vali1 , 〉, . . . , 〈vn, valin〉}, it is sufficient to show that FC-CBJ never back-
jumps more than 1 step backwards when applied to Z. First, we show that
FC-CBJ never backjumps when explores a maximal partial solution. Actually,
an assignment of every vi conflicts only with 〈vn+1, vali〉. That is, every assign-
ment of a maximal partial solution conflicts with the unique value of vn+1. This
means that when the current domain of vn+1 is emptied, all the variables of
{v1, . . . , vn} appear in conf(vn+1). Therefore, after discarding the assignment of
vn, the set {v1, . . . , vn} \ {vn} is added to the conflict set of vn. Further, when
the domain of vn is emptied, FC-CBJ has no choice but to backtrack to vn−1.

Tracing further the execution of FC-CBJ, we observe that whenever an assign-
ment of vi is discarded, the set {v1, . . . , vi−1} is added to conf(vi). Hence, when
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the current domain of vi is emptied, FC-CBJ backtracks to vi−1. This argumen-
tation shows that FC-CBJ applied to Z with lexicographic ordering heuristic
never backjumps and thus explores at least nn partial solutions.

5 Conclusion

In this paper we presented complexity analysis of a few heuristic algorithm for
solving of CSPs. In particular, we proved that FC-CBJ combined with FF has
time-complexity of O∗((d − 1)n). We have also demonstrated that the above
combination of techniques is necessary is order to reduce complexity. In partic-
ular, we have proven that FC with FF as well as FC-CBJ without an ordering
heuristic both have a complexity greater than O∗((d− 1)n).

The results presented can be further generalized. Note that the only property
of FF used in the proof of Theorem 1 is that FF does not select a variable
with the largest current domain. Consequently, the result of Theorem 1 can
be generalized for a combination of FC-CBJ with any heuristic that has the
above property. Note also that FC-CBJ can be replaced by another intelligent
backtracking algorithm like MAC-CBJ [6] or CCFC- [1].
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Abstract. We propose a generic type system for the Constraint Han-
dling Rules (CHR), a rewriting rule language for implementing constraint
solvers. CHR being a high-level extension of a host language, such as Pro-
log or Java, this type system is parameterized by the type system of the
host language. We show the consistency of the type system for CHR
w.r.t. its operational semantics. We also study the case when the host
language is a constraint logic programming language, typed with the
prescriptive type system we developed in previous work. In particular,
we show the consistency of the resulting type system w.r.t. the extended
execution model CLP+CHR. This system is implemented through an
extension of our type checker TCLP for constraint logic languages. We
report on experimental results about the type-checking of twelve CHR
solvers and programs, including TCLP itself.

1 Introduction

The language of Constraint Handling Rules (CHR) of T. Frühwirth [1] is a suc-
cessful rule-based language for implementing constraint solvers in a wide variety
of domains. It is an extension of a host language, such as Prolog [2], Java [3]
or Haskell [4], allowing the introduction of new constraints in a declarative way.
CHR is used to handle user-defined constraints while the host language deals
with other computations using native constraints. CHR is a committed-choice
language of guarded rules that rewrite constraints into simpler ones until they
are in solved forms. One peculiarity of CHR is that it allows multiple heads in
rules.

Typed languages have numerous advantages from the point of view of program
development, such as the static detection of programming errors or program com-
position errors, and the documentation of the code by types. CHR has already
been used for the typing of programming languages, either for solving subtyp-
ing constraints [5, 6] or for handling overloading in functional languages [7] and
constraint logic languages [8, 6]. There has been however not much work on the
typing of CHR itself. In [4], Chin, Sulzmann and Wang propose a monomorphic
type system for the embedding of CHR into Haskell.

In this article, we propose a generic type system for CHR inspired by the
TCLP type system for constraint logic programs [9]. CHR being an extension
of a host language, this system is parameterized by the type system of the
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host language. We will make three assumptions on the type system of the host
language:

– Typing judgments of the form Γ  t : τ are considered, where τ is a type
associated to the expression t in a typing environment Γ . Moreover well-typed
constraints in a typing environment Γ are defined by a derivation system for
typing judgments.

– The constraint t1 = t2 is well-typed in the environment Γ if there exists a
type τ such as Γ  t1 : τ and Γ  t2 : τ .

– If a conjunct c of native constraints is well-typed in an environment Γ and
is equivalent to a conjunct d, then d is also well-typed in Γ .

Using these assumptions, we show the consistency of the type system for CHR
w.r.t. its operational semantics. This is expressed by a subject reduction theorem
which establishes that if a program is well-typed then all the derived goals from
a well-typed goal are well-typed.

We also study the instantiation of this type system with the TCLP type
system for constraint logic programs [9]. We show a subject reduction theorem
for the CLP+CHR execution model [1] in which it is possible to extend the
definition of constraints by clauses. This result is interesting because constraint
logic programming is a very natural framework for using CHR constraint solvers.
A type system for CLP+CHR allows us to type-check, on the one hand, CHR
constraint solvers together with the CLP programs that use them, and, on the
other hand, complex constraint solvers written with a combination of CHR rules
using CLP predicates, and CLP clauses posting CHR constraints.

The rest of the paper is organized as follows. Section 2 recalls the syntax and
operational semantics of CHR, including the CLP+CHR execution model. Sec-
tion 3 presents the type system and section 4 presents its instantiation with the
type system for CLP. Section 5 presents some experimental results on the typ-
ing of some CHR solvers, using the implementation of the system in TCLP [10].
Finally, we conclude in section 6.

2 Preliminaries on CHR

Here, we recall the syntax and semantics of CHR, as given in [1]. We distin-
guish the user-defined CHR constraints from the native constraints of the host
language, which represent auxiliary computations that take place during the ap-
plication of a CHR rule. We assume that native constraints are handled by a
predefined solver of the host language. We also assume that native constraints
include the equality constraint = /2 and the constraint true. Expressions1 of the
host language are noted s, t and constraints are noted c(t1, . . . , tn). We note X
the domain of native constraints, and CT its (possibly incomplete) first-order
logic theory.

1 When the host language is a CLP dialect, as in section 4, the expressions are simply
the CLP terms.
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2.1 Syntax

Definition 1. A CHR rule is either:

– a simplification rule of the form:
H1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

– a propagation rule of the form:
H1, . . . , Hi ==> G1, . . . , Gj | B1, . . . , Bk

– or a simpagation rule of the form:
H1, . . . , Hl \Hl+1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

with i > 0, j ≥ 0, k ≥ 0, l > 0 and H1, . . . , Hi is a nonempty sequence of CHR
constraints, the guard G1, . . . , Gj being a sequence of native constraints and the
body B1, . . . , Bk being a sequence of CHR and native constraints.

A CHR program is a finite sequence of CHR rules.

The constraint true is used to represent empty sequences. The empty guard can
be omitted, together with the | symbol. The notation name@R gives a name to
a CHR rule R.

Informally, a simplification rule replaces the constraints of the head by the
constraints of the body if its guard is implied by the constraint store. A propa-
gation rule adds the constraints of the body while keeping the constraints of the
head in the store. A simpagation rule is a mix of the two preceding kind of rules:
the constraints Hl+1, . . . , Hi are replaced by the body, while the constraints
H1, . . . , Hl are kept.

For the sake of simplicity, and because the distinction of propagation and
simpagation rules are not needed for typing purposes, we will consider that a
propagation or a simpagation rule of the form

H1, . . . , Hl \Hl+1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

is just an abbreviation for the simplification rule

H1, . . . , Hi <=> G1, . . . , Gj | H1, . . . , Hl, B1, . . . , Bk.

where H1, . . . , Hl are explicitely removed and put back into the store.

Example 1. The following CHR program, taken from [1], defines a solver for a
general ordering constraint =<.

reflexivity @ X=<Y <=> X=Y | true.
antisymetry @ X=<Y , Y=<X <=> X=Y.
transitivity @ X=<Y , Y=<Z ==> X=<Z.
identity @ X=<Y \ X=<Y <=> true.

The rule reflexivity eliminates the =< constraints when its two arguments are
equal. Rule antisymmetry simplifies a double inequality into an equality. The
rule transitivity adds constraints corresponding to the transitive closure of
=<. Finally, identity eliminates redundant =< constraints.
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2.2 Operational Semantics

The operational semantics of CHR is expressed by a transition system, noted
�−→, over states which are triples 〈F, E, D〉, where F is a goal, that is a multiset
of native and CHR constraints, E is a CHR constraint store and D is a native
constraint store. A state is thus a conjunction of CHR and native constraints.

In the following definition, the equality is extended to constraints by mor-
phism, that is c(t1, . . . , tn) = c(t′1, . . . , t′n) if t1 = t′1 ∧ . . .∧ tn = t′n. The conjunc-
tion notation ∧ is used to express the matching of a constraint in a multiset,
The equality is also extended to conjunctions of constraints: H1 ∧ . . . ∧ Hn =
H ′

1 ∧ . . . ∧H ′
n if H1 = H ′

1 ∧ . . . ∧Hn = H ′
n.

Definition 2. Let P be a CHR program. The transition relation �−→ is given by
the following rules, where the variables appearing in triples stand for conjunctions
of constraints and x̄ represents the set of variables appearing in the head H.

Solve
〈C ∧ F, E, D〉 �−→ 〈F, E, D′〉
if C is a native constraint and CT |= (C ∧D) ⇔ D′.

Introduce
〈H ∧ F, E, D〉 �−→ 〈F, H ∧ E, D〉
if H is a CHR constraint.

Simplify
〈F, H ′ ∧ E, D〉 �−→ 〈B ∧ F, E, H = H ′ ∧D〉
if (H <=> G | B) is in P renamed with fresh variables,
and CT |= D ⇒ ∃x̄(H = H ′ ∧G).

Propagate
〈F, H ′ ∧ E, D〉 �−→ 〈B ∧ F, H ′ ∧ E, H = H ′ ∧D〉
if (H ==> G | B) is in P renamed with fresh variables,
and CT |= D ⇒ ∃x̄(H = H ′ ∧G).

The Solve transition corresponds to a transition of the native constraint solver.
The Introduce transition simply transfers a CHR constraint from the goal
to the CHR constraint store The Simplify transition correspond to the applica-
tion of CHR simplification. The Propagate transition is indicated for the sake of
clarity, although it is treated as an abbreviation for a simplification rule in the
rest of the paper. The condition for applying these rules is that the head of
the rule can be instantiated such that the guard and the matching condition of
the head are implied by the current native constraint store. The body of the rule
is then added to the current goal and, when applying a Simplify transition, the
constraints matching the head are removed from the constraint store.

Definition 3. An initial state consists in a goal F and two empty constraint
stores: 〈F, true, true〉. A final state is either of the form 〈F, E, false〉 ( failure),
or of the form 〈true, E, D〉 where D is satisfiable ( success).

The following example illustrates the execution of a CHR program.



104 E. Coquery and F. Fages

Example 2. Let us consider the solver given in example 1 together with the ini-
tial state 〈X=<Y ∧ Y=<Z ∧ Z=<X, true, true〉. One possible execution is:

〈Z=<X, X=<Y∧ Y=<Z, true〉 (Introduce ×2)
〈X=<Z ∧ Z=<X, X=<Y ∧ Y=<Z, true〉 (Propagate transitivity)
〈true, X=<Z∧ Z=<X ∧ X=<Y ∧ Y=<Z, true〉 (Introduce ×2)
〈X=Z, X=<Y ∧ Y=<Z, true〉 (Simplify antisymmetry)
〈true, X=<Y∧ Y=<Z, X=Z〉 (Solve)
〈X=Y, true, X=Z〉 (Simplify antisymmetry)
〈true, true, X=Y ∧ X=Z〉 (Solve)

One can remark that in this operational semantics, once a propagation rule
can be applied, it can be applied infinitely often, which leads to a trivial case of
non termination. In the preceding example, one could have applied the
transitivity rule instead of the antisymmetry rule, thus reintroducing the
constraint X=<Z that was eliminated at the fourth step. In [11], Abdennadher
gives refined operational semantics that are more faithful to the actual imple-
mentation of CHR. In particular the previous behavior is avoided by restricting
the application of a rule only once on the same constraints. The subject reduction
theorems given in the following sections express that given a well-typed program,
a transition occurring from a well-typed state leads to a well-typed state. It is
worth noting that they thus hold also in these more realistic semantics.

2.3 CLP+CHR

When the host language is a constraint logic programming language of the class
CLP (X ) [12], it is possible to tightly integrate CHR to the host language. To
this end, Frühwirth [1] proposed to extend CHR with the construct label with
used to define CHR constraints by CLP clauses. We recall here the syntax and
operational semantics of this extension. We note SF (resp. SP ) the set of function
(resp. predicate) symbols, given with their arity, and V the set of variables. An
atom is either a native constraint, a CHR constraint or of the form p(t1, . . . , tn),
where p/n is a program predicate symbol.

Definition 4. A labeling declaration for a CHR constraint H is an expression
of the form:

label with H if G1, . . . , Gj

where G1 . . . , Gj is a conjunction of native constraints.
Clauses are of the form:

H :- B1, . . . , Bn

where H an atom corresponding either to a predicate or to a CHR constraint but
not to a native constraint, and B1, . . . , Bk is a sequence of atoms.
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The declaration label with c(t1, . . . , tn) if G1, . . . , Gj expresses that if the guard
G1, . . . , Gj is implied by the constraint store, then c(t1, . . . , tn) is non determinis-
tically replaced by the body of one of the clauses for c/n. The following definition
gives formal semantics to label with declarations and to predicate calls.

Definition 5. The relation transition between CHR states is extended by the
two following rules:

Unfold
〈H ′ ∧ F, E, D〉 �−→ 〈B ∧ F, E, H = H ′ ∧D〉
if (H :- B) is in P renamed with fresh variables,
and H is not a CHR constraint.

Label
〈F, H ′ ∧ E, D〉 �−→ 〈B ∧ F, E, H = H ′ ∧D〉
if (H :- B) and (label with H ′′ if G) are in P renamed with fresh variables,
and CT |= D ⇒ ∃x̄(H ′ = H ′′ ∧G)

The Unfold transition is close to the CSLD resolution rule [12]. The difference
is that, under CSLD resolution, the constraints in the body of the resolving
clause are added to the native constraint store and the resulting store, i.e. H =
H ′ ∧D ∧ C, must be satisfiable, which is not demanded here. The CLP clauses
for CHR constraints can only be used in a Label transition, requiring that the
guards declared using label with are implied by the current native constraint
store.

3 Type System

3.1 Assumptions About the Type System of the Host Language

Since CHR is an extension of a host language, the type system we propose is
parameterized by the type system, noted  N , of the host language. We will make
the following assumptions on  N .

We suppose that  N is based on a type algebra, the set of types being noted
T . Types are noted using the letter τ . Typing environments, noted Γ , associate
types to program variables. Given an expression t and a typing environment Γ ,
 N is used to deduce typing judgments of the form Γ  N t : τ . Similarly,  N is
used to deduce well-typed constraints in a typing environment Γ , a conjunction
C1∧. . .∧Cn of native constraints being well-typed in Γ if for each i ∈ {1, . . . , n},
Ci is well-typed in Γ . We note Γ  N C Atom, the fact that C is well-typed in
the typing environment Γ . We also assume that the equality constraint s = t
between s and t is well-typed in Γ if there exists a type τ such that Γ  N s : τ
and Γ  N t : τ .

We assume that the union of type environments over disjoint sets of variables
can be formed with an operation noted ! such that if Γ  N t : τ then Γ !Γ ′  N

t : τ for any typing environment Γ ′ disjoint from Γ .
We also assume that if a conjunction of native constraints C is well-typed in a

typing environment Γ and CT |= C ⇔ D, then there exists a typing environment
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Γ ′, such that the conjunction of constraints D is well-typed in Γ ! Γ ′. This
condition, needed for theorem 1, expresses that Solve transitions performed
by the native constraint solver do not produce ill-typed constraint stores from
well-typed ones.

3.2 Type System for CHR

The type system we propose for CHR defines a notion of well-typedness for
CHR rules. To each CHR constraint symbol c/n is associated a set of types
types(c/n), each type being of the form τ1× . . .×τn. This set of types is assumed
to be fixed, for example using some declarations provided by the programmer.
This framework allows the use of parametric polymorphism [13]. A parametric
type scheme ∀α1 . . . αk. τ1 × . . .× τn is represented by the set of all its possible
instantiations. For example, declaring that types(append/3) = {list(τ)×list(τ)×
list(τ) | τ ∈ T } allows one to give the type ∀α. list(α)× list(α) × list(α) to the
constraint append/3.

Table 1. Type system for CHR

(Native)
Γ �N C Atom

Γ � C Atom
if C is a native constraint

(CHR Atom)
Γ �N t1 : τ1 . . . Γ �N tn : τn

Γ � c(t1, . . . , tn) Atom

if c/n a CHR constraint
and if τ1 × . . . × τn ∈ types(c/n)

(Goal)
Γ � B1 Atom . . . Γ � Bn Atom

Γ � B1, . . . , Bn Goal

(CHR Head)
Γ �N t1 : τ1 . . . Γ �N tn : τn

Γ � c(t1, . . . , tn) Head τ1×...×τn

if c/n a CHR constraint
and if τ1 × . . . × τn ∈ types(c/n)

(MultiHead)
Γ � H1 Headσ1 . . . Γ � Hi Headσi

Γ � H1, . . . , Hi MHeadσ1,...,σi

(Simpl CHR)

∀σ̄ ∈ S̄,∃Γσ̄

Γσ̄ � H1, . . . , Hn MHead σ̄

Γσ̄ � G1, . . . , Gr Goal

Γσ̄ � B1, . . . , Bq Goal

� H1, . . . , Hn <=> G1, . . . , Gr | B1, . . . , Bq Rule

where σ̄ = (σ1, . . . , σn), S̄ = S1 × . . . × Sn

and for all i ∈ {1, . . . , n}, Hi = ci(ti
1, . . . , t

i
mi

) and Si = types(ci/mi)

The rules of the type system for CHR are given in table 1, where σ’s represent
types of CHR constraints and S’s represent sets of such types. A CHR constraint
H is well-typed in Γ if the judgment Γ  H Atom can be derived from the typing
rule. Terms or expressions appearing as arguments of the constraints are typed
using the type system  N for the host language.
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The typing rules resemble the rules of Chin, Sulzmann and Wang [4], but add
the possibility for a CHR constraint to have more than one type, and abstract
from the type system of the host language.

The rules (CHR Head) and (MultiHead), differ from (CHR Atom) and (Goal)
in that they add an annotation for keeping track of the type used for typing
each head. The rule (Simpl CHR) requires, for each combination σ1, . . . , σn of
the types of the different occurrences of the CHR constraints of the head of
the CHR rule, that the head, the guard and the body of the CHR rule are
well-typed in some typing environment Γσ1,...,σn . As shown in section 4.3, in
the case of parametric polymorphism, this can be ensured by renaming the type
scheme of each occurrence of CHR constraints in the head with distinct variables,
which can be seen as applying the principle of definitional genericity [14] to the
typing of CHR constraints. In the context of logic programming, this principle
establishes that the type of the head of a clause must be equivalent to, up to
renaming but not an instance of, the declared type of the predicate.

The following lemma expresses that the well-typedness of goals is preserved
by extension of the environment:

Lemma 1. Let G be a goal and Γ a typing environment such that Γ  G Goal.
Let Γ ′ be a typing environment such that Γ!Γ ′ is defined. Then Γ!Γ ′  G Goal.

Proof. By induction on the derivation and by using the assumption that if Γ  N

t : τ then Γ ! Γ ′  N t : τ .

The consistency of the type system w.r.t. the operational semantics of CHR
is given by the following subject reduction theorem, which expresses that the
well-typedness of goals is preserved by transitions:

Theorem 1. Let P be a well-typed CHR program. Let 〈F, E, D〉 and 〈F ′, E′, D′〉
be two states such that 〈F, E, D〉 �−→ 〈F ′, E′, D′〉. If there exists a typing envi-
ronment Γ such that Γ  F, E, D Goal , then there exists a typing environment
Γ ′ such that Γ ′  F ′, E′, D′ Goal . Moreover, if the transition rule contains a
guard G then Γ ′  G Goal .

Proof. By case on the transition.

Solve. By hypothesis, Γ  D Goal and Γ  C Atom. Since CT |= (C∧D) ⇔ D′,
and by assumption on  N , there exists a typing environment Γ ′′ such that
Γ ! Γ ′′  N D′ Goal . By posing Γ ′ = Γ ! Γ ′′ and by lemma 1, we obtain
Γ ′  F, E Goal , thus Γ ′  F, E, D′ Goal .

Introduce. This transition only moves a constraint from the goal to the CHR
constraint store, thus the resulting state is also well-typed in Γ .

Simplify. Let H = c1(t11, . . . , t
1
m1

) ∧ . . . ∧ cn(tn1 , . . . , tnmn
). Moreover, for some

E = H ′ ∧E′′, with CT |= D ⇒ H ′ = H . This means H ′ = c1(s1
1, . . . , s

1
m1

) ∧
. . . ∧ cn(sn

1 , . . . , sn
mn

). Since H ′ is well typed in Γ , for each i ∈ {1, . . . , n},
there exists σi ∈ types(ci/mi) such that σi = τ i

1 × . . . × τ i
mi

and, for each
j ∈ {1, . . . , mi}, Γ  N si

j : τ i
j .
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Since the rule (H <=> G | B) is well-typed, there exists a typing environ-
ment Γ ′′ = Γσ1,...,σn such that Γ ′′  H1, . . . , Hn MHeadσ1,...,σn , Γ ′′  G Goal
and Γ ′′  B Goal .

By lemma 1, and by posing Γ ′ = Γ ! Γ ′′, we obtain Γ ′  F, E, D Goal
and Γ ′  G, B Goal . It remains to prove that H = H ′ is well-typed in Γ ′.
We have for each i ∈ {1, . . . , n}, for each j ∈ {1, . . . , mi}, Γ ′  N si

j : τ i
j .

Since Γ ′′  H MHeadσ1,...,σn , then for each i ∈ {1, . . . , n}, Γ ′′  Hi Headσi .
Thus for each j ∈ {1, . . . , mi}, Γ ′′  N tij : τ i

j . Thus Γ ′  N tij = si
j Atom.

Thus, we obtain Γ ′  B, F, E, H = H ′, D Goal and Γ ′  H = H ′, G Goal .

The following example shows the necessity of considering all possible combina-
tions of types when typing a CHR rule with multiple heads.

Example 3. Let us assume that the constraint =< has the type scheme ∀α.α×α.
Let us consider the polymorphic type list(α) for lists and the types int and
string. We assume that the empty list [] has type ∀α. list(α), that the list
constructor has type ∀α. α× list(α) → list(α), and that list(int) and list(string)
are incompatible2. Then the transitivity rule is not well-typed:

X=<Y, Y=<Z ==> X=<Z

For example, one might consider the type list(int) × list(int) for the first
occurrence of =</2 and the type list(string)× list(string) for the second one, in
which case the head is not well-typed because Y can not have both types list(int)
and list(string).

The transitivity rule above can produce an ill-typed state from a well-typed
one. The state 〈true, ["a"] =< []∧[] =< [1], true〉 is well-typed. However the
rule would add X = ["a"]∧Z = [1]∧X =< Z to the current goal. This subgoal
is not well-typed because, when typing X =< Z, the type chosen for =</2 must
be compatible both with list(string) and list(int). In other words it is possible
to end up with an inequality constraint between two terms with incompatible
types, while the type of inequality explicitly state that they should have the same
type, which can lead to unexpected errors during the execution of the program.

4 Integration with CLP

In this section we are interested in the particular case where the host language is
a constraint logic language, typed using the prescriptive type system TCLP [9].
This system combines parametric polymorphism, subtyping and overloading to
obtain the flexibility that is needed for typing CLP programs that are originally
untyped. In particular, subtyping is used for typing the simultaneous use of
different constraint domains: for instance, the relation boolean ≤ int allows one
to see booleans as integers, and thus to type check constraints combining boolean

2 For example, this is the case if we consider the native constraint domain to be
the Herbrand universe typed with the Mycroft-O’Keefe type system [13] without
overloading.
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variables with integer variables (such as in a sum of boolean variables). Subtyping
is also used for the typing of programs using meta-programming techniques: the
relation list(α) ≤ term allows one to see homogeneous lists as terms and to apply
decomposition predicates to them, such as functor/3, arg/3 or =../2.

In [9], the type system of TCLP is proved consistent w.r.t. the CSLD execu-
tion model [12], which is an abstract model of execution proceeding by constraint
accumulation. In particular, the transformations that can be made by the con-
straint solver are not considered. In the following, we assume that the solver for
native constraints only performs simplifications that preserve well-typedness,
according to the assumptions of section 3.1. This can be obtained either by us-
ing a typed execution model, as proposed in [9], or, in the case of the equality
constraint, by using modes to fix the dataflow [15].

First, we present the type algebra used in the system, then we recall the typing
rules for CLP, together with a typing rule for the labeling declaration label with.
The resulting system is proven consistent w.r.t. the CLP+CHR execution model.

4.1 Type Structure

We consider a partial order (K,≤K) of type constructors, given with their arity.
The set T of types is the set of finite or infinite types built on K.

Subtyping Relation. The use of subtyping for meta-programming purposes
requires to consider relations like list(α) ≤ term. This form of non-structural
non-homogeneous subtyping links different constructors of different arities. Such
subtyping relations require to express the correspondence between the different
arguments of type constructors. For example, by writing k1(α, β) ≤ k2(β), we
specify that types built with k1 are subtypes of those built with k2, provided
that the second argument of k1 is a subtype of the argument of k2, the first
argument of k1 being forgotten in the subtyping relation. One way to express
the correspondence is to use a formalism of labels, as proposed by Pottier [16].
In this formalism, a label is associated to each argument of type constructors,
the correspondence being expressed by the fact that two arguments of type
constructors have the same label. The subtyping order ≤ is built from the order
≤K on type constructors and from the labels. A formal description of the type
structure is given in [5], where the structures of types and type constructors are
quasi-lattices, i.e. partial orders in which two elements have a least upper (resp.
greatest lower) bound if and only if they have an upper (resp. lower) bound.

Subtyping Constraints. Let W be a set of type variables, or parameters, noted
α, β, . . . . We note TW the set of types built on K ∪W.

Definition 6. A subtyping constraint is of the form τ1 ≤ τ2, where τ1, τ2 ∈ TW
are finite types. A substitution ρ : W → T satisfies the constraint τ1 ≤ τ2, noted
ρ |= τ1 ≤ τ2, if ρ(τ1) ≤ ρ(τ2). The subtyping constraint τ1 ≤ τ2 is satisfiable if
there exists a substitution ρ such that ρ |= τ1 ≤ τ2.
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In [5], sufficient conditions on (K,≤K) are given for the decidability of the sat-
isfiability of subtyping constraints in quasi-lattices, this problem is shown to be
NP-complete, and a practical algorithm (used in section 5) is given for computing
explicit solutions.

4.2 Type System for CLP+CHR

In order to support the overloading of CLP function and predicate symbols,
we assume that a set types(f/n) of type schemes of the form ∀ᾱ.τ1 × . . . ×
τn → τ is associated to each function symbol f/n (resp. predicate symbol p/n),
where ᾱ is the set of parameters occurring in types τ1, . . . , τn, τ . These sets
of types are supposed to be fixed, for example using declarations provided by
the programmer. We also assume that the type of the constraint = /2 is the
type scheme ∀α.α × α. For the sake of simplicity, the quantification ∀ᾱ will be
omitted in type schemes, each occurrence of a type scheme being renamed with
fresh parameters.

A typing environment is a partial mapping Γ : V �→ TW , also noted {X1 :
τ1, . . . , Xn : τn}. The operation ! on typing environments is defined as disjoint
union, that is (Γ1 ! Γ2)(X) = Γ1(X) if X ∈ dom(Γ1), (Γ1 ! Γ2)(X) = Γ2(X) if
X ∈ dom(Γ2), and (Γ1 ! Γ2)(X) is undefined otherwise.

Table 2. Type system for CLP and label with

(Var)
X : τ ∈ Γ

Γ � X : τ
(Sub)

Γ � t : τ τ ≤ τ ′

Γ � t : τ ′

(Func)
Γ � t1 : τ1ρ . . . Γ � tn : τnρ

Γ � f(t1, . . . , tn) : τρ

ρ is a type substitution
τ1 × . . . τn → τ ∈ types(f/n)

(Atom)
Γ � t1 : τ1ρ . . . Γ � tn : τnρ

Γ � p(t1, . . . , tn) Atom
ρ is a type substitution
τ1 × . . . τn ∈ types(p/n)

(Head)
Γ � t1 : τ1ρ . . . Γ � tn : τnρ

Γ � p(t1, . . . , tn) Headτ1×...×τn

ρ is a type renaming
τ1 × . . . τn ∈ types(p/n)

(Clause)
∀σ ∈ types(p/n)

Γσ � p(t1, . . . , tn) Headσ

Γσ � B1 Atom . . . Γσ � Bk Atom
� p(t1, . . . , tn) :- B1, . . . , Bk Clause

(Label with)
Γ � H Atom Γ � G Goal

� label with H if G Label with

Table 2 gives the typing rules for CLP, together with the typing rule for the
declaration label with. The typing rules for CLP resemble the rules of Mycroft
and O’Keefe [13] with the addition of subtyping and overloading. A predicate
call p(t1, . . . , tn) (resp. a native constraint) is well-typed in a typing environment
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Γ if Γ  p(t1, . . . , tn) Atom can be derived from the rules. A clause H :- B
is well-typed if  H :- B Clause can be derived from the rules. A labeling
declaration label with H if G is well-typed if  label with H if G Label with can
be derived. The (Sub) rule gives the semantics of subtyping by expressing that
if a term t has type τ , then it has all types that are greater than τ .

The set of rules of tables 1 and 2 define the type system for CLP+CHR. A
CLP+CHR program is well-typed if all its CHR rules, all its clauses and all its
labeling declarations are well-typed.

The distinction between rules (Atom) and (Head) expresses the principle of
definitional genericity [14], which establishes that the type of the head of a clause
must be equivalent to, up to renaming but not an instance of, the declared type
of the predicate. The rule (Clause) imposes that a clause must be well-typed
for all possible types of the defined predicate, in a typing environment Γσ that
depends on the considered type σ. This can be seen as a condition similar to
definitional genericity for overloading. These two conditions are useful for the
following subject reduction theorem which expresses the consistency of the type
system with reference to the operational semantics of CLP+CHR.

Theorem 2. Let us consider a well-typed CHR+CLP program. Let 〈F, E, D〉
and 〈F ′, E′, D′〉 be two states and Γ be a typing environment such that Γ  
F, E, D Goal . If 〈F, E, D〉 �−→ 〈F ′, E′, D′〉, then there exists a typing environ-
ment Γ ′ such that Γ ′  F ′, E′, D′ Goal . Moreover, if the transition rules contain
a guard G then Γ ′  G Goal .

The proof of theorem 2 is preceded by a lemma which expresses that in a deriva-
tion apart from (Head) or (Clause), the types can be arbitrarily instantiated.

Lemma 2. For any typing environment Γ , for any judgment R different from
Head or Clause and any type substitution ρ, if Γ  R then Γρ  Rρ.

Proof. By induction on the derivation.

Proof (of theorem 2). One can check that the assumptions of section 3.1 are cor-
rect for the the system of table 2. Moreover, an atom corresponding to a predicate
call and an atom corresponding to a native constraint are typed in the same way.
Therefore, by theorem 1, if the transition is one of Solve, Introduce or Sim-
plify, then there exists a typing environment Γ ′ such that Γ ′  F ′, E′, D′ Goal
and Γ ′  G Goal in case of need.

Let us consider the Unfold transition. We can assume, without loss of gen-
erality, that H ′ = p(s) and H = p(t). Since Γ  p(s) Atom, there exists a type
scheme τ ∈ types(p) and a substitution ρ such that Γ  s : τρ. Since the pro-
gram is well-typed,  H :- B Clause, thus there exists a typing environment
Γτ such that Γτ  B Goal and Γτ  p(t) Head τ , that is Γτ  t : τρr where ρr is
a renaming of τ . By posing ρ′ = ρ−1

r ρ, and by lemma 2, we obtain Γτρ′  t : τρ
and Γτρ′  B Goal . By posing Γ ′ = Γτρ′ ! Γ , we obtain Γ ′  t = s Atom. Thus
Γ ′  B, F, E, s = t, D Goal .

Let us finally consider the case of a Label transition. Similarly to the case
of the Unfold transition, there exists a typing environment Γ ′, such that Γ ′  
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B, F, E, t = s, D. Since H ′ is a CHR constraint, τ does not contain any para-
meter, that is ρ′′ is the identity substitution. We have H ′′ = p(u) for some term
u. Since  label with H ′′ if G Label with, there exists a typing environment Γlw
such that Γlw  G Goal and Γlw  H ′′ Atom, that is Γlw  u : τ . By pos-
ing Γ ′′ = Γ ′ ! Γlw , we obtain Γ ′′  s = u Atom, Γ ′′  B, F, E, s = t, D and
Γ ′′  G Goal , and thus Γ ′′  s = u, G Goal .

4.3 Typing of Polymorphic CHR Constraints

In this section, we show how to type check CHR constraints in the presence of
parametric polymorphism. The set types(c/n) of the types of the constraint c/n is
restricted to a finite set of type schemes of the form ∀ᾱ. τ1×. . .×τn. This does not
mean that types(c/n) itself is finite, as a type scheme represent an infinite set of
types. More precisely, we assume a finite set typesp(c/n) of type schemes and de-
fine types(c/n) = {τ1ρ×. . .×τnρ | ∀ᾱ. τ1×. . .×τn ∈ typesp(c/n) and ρ : ᾱ → T }.

Table 3. Typing rules for polymorphic CHR constraints

(CHR Atomp)
Γ � t1 : τ1ρ . . . Γ � tn : τnρ

Γ � c(τ1, . . . τn) Atom
ρ is a type substitution

∀ᾱ. τ1 × . . . × τn ∈ typesp(c/n)

(CHR Headp)
Γ � t1 : τ1ρ . . . Γ � tn : τnρ

Γ � c(τ1, . . . τn) Headτ1×...×τn,ρ

ρ is a type renaming
∀ᾱ. τ1 × . . . × τn ∈ typesp(c/n)

(MultiHeadp)

∀i ∈ {1, . . . , n} Γ � Hi Headσi,ρi

∀ 1 ≤ i < j ≤ n codom(ρi) ∩ codom(ρj) = ∅

Γ � H1, . . . , Hn MHeadσ1,...,σn

A type system that deals directly with parametric polymorphism can be ob-
tained by replacing rules (CHR Atom), (CHR Head) and (MultiHead) by their
counterparts given in table 3 and by replacing types(ci/mi) by typesp(ci/mi) in
rule (Simpl CHR). The resulting type system is noted  p. The following propo-
sition expresses the equivalence of the two type systems:

Proposition 1. A CHR rule (resp. goal) is well-typed in  if and only if it is
well-typed in  p.

Proof. First we show the proposition for atoms, which extends straightforwardly
to goals. Let us assume that Γ  c(t1, . . . , tn) Atom. Then there exists τ1× . . .×
τn ∈ types(c/n) such that for each i ∈ {1, . . . , n}, Γ  ti : τi. By definition, there
exists a type substitution ρ and a type scheme ∀ᾱ. τ ′

1 × . . . × τ ′
n ∈ typesp(c/n)

such that for each i ∈ {1, . . . , n}, τi = τ ′
iρ. Therefore, Γ  p c(t1, . . . , tn) Atom.

On the other hand, if Γ  p c(t1, . . . , tn) Atom, then there exists ∀ᾱ. τ ′
1 × . . .×

τ ′
n ∈ typesp(c/n) and ρ such that for each i ∈ {1, . . . , n}, Γ  ti : τ ′

iρ. Since
τ1ρ× . . . τnρ ∈ types(c/n), we obtain Γ  c(t1, . . . , tn) Atom.

Now we show that if a rule is well-typed in  p, then it is well-typed in  .
Similarly to lemma 2, if Γ  p t : τ (resp. Γ  p A Atom), then Γρ  p t : τρ (resp.
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Γρ  p A Atom). We pose, for each i ∈ {1, . . . , n}, Hi = ci(ti1, . . . , t
i
mi

). Let us
consider (σ1 × . . .× σn) ∈ types(c1/m1)× . . .× (cn/mn). For each i ∈ {1, . . . , n}
there exists ρ′i and σ′

i ∈ typesp(ci/ni) such that σi = σ′
iρ

′
i. By rules (Simpl CHR)

and (MultiHeadp), there exists a typing environment Γp and some type renam-
ings ρ1, . . . , ρn, with distinct codomains, such that, for each i ∈ {1, . . . , n},
Γ  p Hi Headσ′

i,ρi
. Since all ρi’s have distinct codomains, we can define ρp =⋃n

i=1 ρ1
i ρ

′
i. Thus, for each i ∈ {1, . . . , n}, ΓpρpHi Headσ′

iρiρ
−1
i ρ′

i
. Thus Γpρp  

H1, . . . , Hn MHeadσ1,...,σn . Moreover Γpρp  p G1, . . . , Gr, B1, . . . , Bq Goal , thus
Γpρp  G1, . . . , Gr, B1, . . . , Bq Goal . As this holds for any (σ1 × . . . × σn) ∈
types(c1/m1)× . . .× (cn/mn), we deduce that the rule is well-typed in  .

Finally, we show that if a rule is well-typed in  , then it is well-typed in
 p. Let (σ1, . . . , σn) ∈ typesp(c1/m1) × . . . × typesp(cn/mn). Let ρ1, . . . ρn be
type renamings of σ1, . . . , σn with distinct codomains. For each i ∈ {1, . . . , n},
by definition of types(ci/mi), σiρi ∈ types(ci/mi). Thus there exists Γ such
that Γ  H1, . . . , Hn MHeadσ1ρ1,...,σnρn and Γ  G1, . . . , Gr, B1, . . . , Bq Goal .
Thus we have Γ  p G1, . . . , Gr, B1, . . . , Bq Goal . It remains to show that Γ  p

H1, . . . , Hn MHeadσ1,...,σn Since Γ  H1, . . . , Hn MHeadσ1ρ1,...,σnρn , then for
each i ∈ {1, . . . , n}, Γ  HiMHeadσiρi and thus, similarly to the case of atoms,
Γ  p HiMHeadσi,ρi . Thus we deduce Γ  p H1, . . . , Hn MHeadσ1,...,σn .

5 Experimental Results

The type system for CLP+CHR has been implemented as an extension of the
TCLP software [10], which is a type checker for constraint logic programming.
Furthermore, a type inference algorithm makes it possible to infer types for vari-
ables and for program predicates automatically. In a lattice of types with top
element term however, the type term × . . .× term is always a possible type for
predicates. For this reason, a heuristic type inference algorithm is used, provid-
ing a more informative type and often the expected type [9, 6]. This algorithm
can also be used to infer the type of CHR constraints that are not declared by
the user.

TCLP uses several solvers written in CHR. The main solver is the one for
subtyping constraints. We also use a CHR solver to handle overloading of func-
tion and predicate symbols during type checking. Some other small CHR solvers
are also used for handling typing environments and preliminary computations
on the structure of type constructors. Hence, the possibility to type check CHR
programs makes it possible that TCLP type checks its own source code.

The following example shows the typical kind of errors detected by TCLP:

Example 4. The following solver handles counters. The constraint cpt/2 asso-
ciates the name of the counter to its value, and has type atom × int .3 The
constraint val/2 also has type atom × int and constraints incr/1 and init/1
have type atom .
3 The type atom corresponds to Prolog atoms, that is symbols of arity 0, and not to

the logical atoms.
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init(C) <=> cpt(C,0).
cpt(C,V) \ val(C,X) <=> X=V.
incr(C), cpt(V,C) <=> V1 is V+1, cpt(C,V1).

The type checker produces the following message:

! Error in "count.pl", line 3 :
Incompatible types for C : atom and int

It is in fact an argument inversion: in the head of the last rule, the arguments
of the constraint cpt were inverted.

The following example shows the result of type inference on a small solver:

Example 5. The following solver, taken from [17], computes the greatest common
divisor of two numbers.

gcd(0) <=> true.
gcd(N) \ gcd(M) <=>

N=<M | L is M mod N, gcd(L).

The type checker infers the following type:

:- typeof gcd(int) is chr_constraint.

that is gcd has type int .

Performance. The speed of the type checker has been evaluated on ten CHR
solvers taken from [17], on the solver for subtyping constraints, on the solver for
overloading in TCLP, as well as on the complete TCLP source code. These tests
were run on a 2 Ghz Pentium IV with 512 Mo of RAM, using the Sicstus Prolog
implementation of TCLP for which the working memory space is limited to 256
Mo. The results are presented in table 4.

Table 4. Performance

Type check Type inference
Program # lines # rules CHR Total CHR Total
gcd 10 2 0.03 s 0.03 s 0.04 s 0.04 s
varleq 30 4 0.04 s 0.26 s 0.07 s 0.43 s
bool 173 78 1.32 s 2.13 s 4.63 s 5.96 s
listdom 73 13 0.78 s 1.45 s 1.77 s 2.75 s
interval 145 24 3.41 s 3.5 s 8.93 s (99.58 s) 9.03 s (99.69 s)
domain 266 84 4.30 s 6.42 s 5.35 s (183.92 s) 7.75 s (186.94 s)
fourier-gauss 328 30 1.98 s 5.88 s 6.01 s (19.04 s) 16.16 s (30.42 s)
arc 47 2 0.14 s 0.81 s 0.23 s 1.09 s
allenComp 495 490 17.48 s 17.51 s NA NA
subtyping 595 57 4.52 s 6.22 s 9.96 s (319.66 s) 15.28 s (322.64 s)
overloading 465 10 0.43 s 3.99 s 1.10 s 8.01 s
TCLP 4594 82 5.22 s 53.97 s 26.61 s (416.08 s) 96.09 s (518.39 s)
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The first column indicates the CLP+CHR program. The second column indi-
cates the number of lines of codes in the program and the third one indicates the
number of CHR rules in the program. Next, in column “Type check”, the type
checking times are given with type inference for variables, but without type in-
ference for predicates or CHR constraints. Finally, the column “Type inference”
indicates the times for inferring types to predicates and constraints. The typing
times for CHR rules are given in columns “CHR”, while the typing times for the
whole CLP+CHR programs are given in the column “Total”. The times given
between parenthesis are obtained without breaking connected components as
explained in the following.

The type checking times without type inference for predicates and constraints
show that the type checker is usable in practice. For example, it takes less than
18 s to check the 490 rules of the allenComp solver, or less than 54 s to check
about 4600 lines of code constituting the source of TCLP.

In presence of subtyping, type inference needs 71 times more CPU time than
type checking. In the case of allenComp, type inference even fails by lack of
memory due to the restriction to 256 Mo. This is due to the fact that, when in-
ferring the type of a constraint, the type checker must consider at the same time
all the rules and clauses in a same connected component of the call graph, while
type checking can be done rule by rule. CHR solvers often use large connected
components however. One reason for this difficulty is that a few constraints
used as data structures, appear in the head of numerous rules, thus creating
large connected components. For example, the solver for subtyping constraints
has a connected component of 54 predicates and CHR constraints. Such con-
nected components thus require to deal with a very large number of subtyping
constraints and overloaded symbols at once. Moreover, algorithms for solving
subtyping constraints and overloading are potentially exponential [8, 5]. From
this point of view, the performance of type inference are quite satisfactory.

It is possible to reduce type inference type by breaking such connected com-
ponents. This can be done by providing the type of the constraints that are used
as data structures. This technique appears to be very efficient, reducing the time
for type inference in domain from 184 s to 5.3 s, just by giving the type of one
constraint. When no time is given between parenthesis, it means that the solver
was already well stratified and thus didn’t need the type for some CHR con-
straint to be given. Moreover, type inference can be used the first time a solver
is written, the inferred types being used afterwards as declarations during the
rest of the development of the solver.

6 Conclusion

We have presented a type system for the Constraint Handling Rules CHR lan-
guage [1], parameterized by the type system of the host language. In the partic-
ular case of constraint logic programming, its combination with the prescriptive
type system TCLP [9] for CLP languages has been presented. Under the as-
sumption that the well-typedness of native constraints is preserved by logical
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equivalence, the type system has been proved consistent w.r.t. the operational
semantics of CHR and CLP+CHR respectively.

The type system for CLP+CHR is implemented as an extension of the TCLP
software [10]. The reported experimental results on ten CHR solvers plus TCLP
itself show that the system is already usable and useful.

As for future work, we plan to get some practical experience from the users
of the system, in particular for the development of complex modular [18] and/or
collaborative CHR solvers. It would also be interesting to study the instantiation
of the type system with the one of Java in the framework of the JACK toolkit
implementation of CHR [3] and as well as with the Haskell implementation [4].
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Abstract. This paper introduces an architecture for generic constraint imple-
mentations based on variable views and range iterators. Views allow, for example,
to scale, translate, and negate variables. The paper shows how to make constraint
implementations generic and how to reuse a single generic implementation with
different views for different constraints. A wide range of applications of views
exemplifies their usefulness and their potential for simplifying constraint imple-
mentations. We introduce domain operations compatible with views based on
range iterators. The paper evaluates the applicability of the approach as well as
different implementation techniques for the presented architecture.

1 Introduction

A challenging aspect in developing and extending a constraint programming system is
implementing a comprehensive set of constraints. Ideally, a system should provide sim-
ple, expressive, and efficient abstractions that ease development and reuse of constraint
implementations.

This paper contributes a new architecture based on variable views and range iterators.
The architecture comprises an additional level of abstraction to decouple variable im-
plementations from constraint implementations, the propagators. Propagators compute
generically with variable views instead of variables.

A view of a variable presents an adaptor that performs transformations while ac-
cessing the variable it abstracts over. Views support operations like scaling, translation,
and negation of variables. Views also abstract over the underlying data structure used
for storing the variable domain. That way, cross-domain views can for example enable
propagators for finite set constraints to operate on finite domain variables.

This simple layer of abstraction allows one propagator to be instantiated multiple
times, with different views. For example, a simple generic propagator for linear equal-
ity ∑k

i=1 xi = c can be used with a scale-view xi = ai · yi to obtain an implementation
of ∑k

i=1 ai · yi = c. Or a negated Boolean view can be used to derive an implementa-
tion of Boolean disjunction from a propagator for conjunction. As a final example, a
cross-domain view of a finite domain variable as a singleton set, together with a subset
propagator, yields a propagator for x ∈ s. Variable views thus assist in implementing
propagators on a higher level of abstraction.

Range iterators support powerful and efficient domain operations on variables and
variable views. The operations can access and modify multiple values of a variable
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domain simultaneously. Range iterators are efficient as they help avoiding temporary
data structures. They simplify propagators by serving as adaptors between variables
and propagator data structures.

The architecture is carefully separated from its implementation. Two different imple-
mentation approaches are presented and evaluated. An implementation using parametric
polymorphism (such as templates in C++) is shown to not incur any runtime cost. The ar-
chitecture can be used for arbitrary constraint programming systems and has been fully
implemented in Gecode [2].

Plan of the paper. The next section presents a model for finite domain constraint
programming systems. Sect. 3 introduces variable views and exemplifies their use.
Sect. 4 presents Boolean views of finite domain variables and discusses pairs of sym-
metric propagators. Sect. 5 introduces iterator-based domain operations that are applied
to views in the following section. Variable views for set constraints are discussed in
Sect. 7. In Sect. 8 implementation approaches for views and iterators are presented,
followed by their evaluation in Sect. 9. The last section concludes and discusses future
work.

2 Constraint Programming Systems

This section introduces the model for finite domain constraint programming systems
considered in this paper and relates it to existing systems.

Variables and propagators. Finite domain constraint programming systems offer ser-
vices to support constraint propagation and search. In this paper we are only concerned
with variables used for constraint propagation. We assume that a constraint is imple-
mented by a propagator. A propagator maintains a collection of variables and performs
constraint propagation by executing operations on them. In the following we consider
finite domain variables and propagators. A finite domain variable x has an associated
domain dom(x) being a subset of some finite subset of the integers.

Propagators do not manipulate variable domains directly but use operations provided
by the variable. These operations return information about the domain or update the
domain. In addition, they handle failure (the domain becomes empty) and control prop-
agation.

Value operations. A value operation on a variable involves a single integer as result or
argument. We assume that a variable x with D = dom(x) provides the following value
operations: x.getmin() returns minD, x.getmax() returns maxD, x.adjmin(n) up-
dates dom(x) to {m ∈ D | m ≥ n}, x.adjmax(n) updates dom(x) to {m ∈ D | m ≤ n},
and x.excval(n) updates dom(x) to {m∈D |m �= n}. These operations are typical for
finite domain constraint programming systems like Choco [6], ILOG Solver [9, 11, 4],
Eclipse [1], Mozart [8], and Sicstus [5]. Some systems provide additional operations
such as for assigning values.

Domain operations. A domain operation supports simultaneous access or update of
multiple values of a variable domain. In many systems this is provided by supporting



120 C. Schulte and G. Tack

an abstract set-datatype for variable domains, as for example in Choco [6], Eclipse [1],
Mozart [8], and Sicstus [5]. ILOG Solver [9, 11, 4] only allows access by iterating over
the values of a variable domain.

Range sequences. Range notation [n .. m] is used for the set of integers {l ∈ Z | n≤ l ≤
m}. A range sequence ranges(I) for a finite integer set I ⊆ Z is the shortest sequence
s = 〈[n1 .. m1] , . . . , [nk .. mk]〉 such that I is covered (set(s) = I, where set(s) is defined
as

⋃k
i=1 [ni .. mi]) and the ranges are ordered by their smallest elements (ni ≤ ni+1 for

1 ≤ i < k). The above range sequence is also written as 〈[ni .. mi]〉k
i=1. Clearly, a range

sequence is unique, none of its ranges is empty, and mi + 1 < ni+1 for 1 ≤ i < k.

3 Variable Views with Value Operations

This section introduces variable views with value operations. The full design with do-
main operations and a discussion of their properties follows in Sect. 6.

Example 1 (Smart n-Queens). Consider the well-known finite domain constraint model
for n-Queens using three alldifferent constraints: each queen is represented by a variable
xi (0 ≤ i < n) with domain {0, . . . ,n−1}. The constraints state that the values of all xi,
the values of all xi− i, and the values of all xi + i must be pairwise different for 0≤ i < n.

If the used constraint programming system lacks versions of alldifferent supporting
that the values of xi + ci are different, the user must resort to using additional variables
yi and constraints yi = xi + ci and the single constraint that the yi are different. This
approach is clearly not very efficient: it triples the number of variables and requires
additional 2n binary constraints.

Systems with this extension of alldifferent must implement two very similar versions
of the same propagator. This is tedious and increases the amount of code that requires
maintenance. In the following we make propagators generic: the same propagator can
be reused for several variants.

To make a propagator generic, all its operations on variables are replaced by opera-
tions on variable views. A variable view (view for short) implements the same opera-
tions as a variable. A view stores a reference to a variable. Invoking an operation on the
view executes the appropriate operation on the view’s variable. Multiple variants of a
propagator can be obtained by instantiating the single generic propagator with multiple
different variable views.

Offset-views. For an offset-view v = voffset(x,c) for a variable x and an integer c, per-
forming an operation on v results in performing an operation on x + c. The operations
on the offset-view are:

v.getmin() := x.getmin()+ c v.getmax() := x.getmax()+ c
v.adjmin(n) := x.adjmin(n− c) v.adjmax(n) := x.adjmax(n− c)
v.excval(n) := x.excval(n− c)

To obtain both alldifferent propagators required by Example 1, also an identity-view
is needed. An operation on an identity-view vid(x) for a variable x performs the same
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operation on x. That is, identity-views turn variables into views to comply with propaga-
tors now computing with views. In an implementation language that supports subtyping,
variables can themselves be regarded as views, eliminating the need for identity views.

Obtaining the two variants of alldifferent is straightforward: the propagator is made
generic with respect to which view it uses. Using the propagator with both an identity-
view and an offset-view yields the required propagators.

Offset-views can also be used to obtain propagators for strict inequalities from prop-
agators for the non-strict constraints. For instance, x < y can be implemented as x ≤
voffset(y,−1).

Sect. 8 discusses how views can be implemented whereas this section focuses on
the architecture only. However, to give some intuition, in C++ for example, propagators
can be made generic by implementing them as templates with the used view as tem-
plate argument. Instantiating the generic propagator then amounts to instantiating the
corresponding template with a particular view.

Views are orthogonal to the propagator. In the above example, offset-views can be
used for any implementation of alldifferent using value operations. This includes the
naive version propagating when variables become assigned or the bounds-consistent
version [10].

Scale-views. In the above example, views allow to reuse the same propagator for vari-
ants of a constraint, avoiding duplication of code and effort. In the following, views can
also simplify the implementation of propagators.

Example 2 (Linear inequalities). A common constraint is linear inequality ∑n
i=1 ai ·xi ≤

c (equality and disequality is similar) with integers ai and c and variables xi. In the
following we restrict the ai to be positive.

A typical bounds-propagator executes for 1 ≤ j ≤ n:

x j.adjmax(�(c− l j)/a j�) with l j = ∑n
i=1,i�= j ai · xi.getmin()

Quite often, models feature the special case ai = 1 for 1 ≤ i ≤ n. For this case, it is
sufficient to execute for 1 ≤ j ≤ n:

x j.adjmax(c− l j) with l j = ∑n
i=1,i�= j xi.getmin()

As this case is common, a system should optimize it. An optimized version requires
less space (no ai required) and less time (no multiplication, division, and rounding).
But, a more interesting question is: can one just implement the simple propagator and
get the full version by using views?

With scale-views, the simple implementation can be used in both cases. A scale-view
v = vscale(a,x) for a positive integer a > 0 and a variable x defines operations for a ·x:

v.getmin() := a · x.getmin() v.getmax() := a · x.getmax()
v.adjmin(n) := x.adjmin(�n/a�) v.adjmax(n) := x.adjmax(	n/a
)
v.excval(n) := if n mod a = 0 then x.excval(n/a)
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From the simpler implementation the special case (identity-views) and the general
case (scale-views) can be obtained. Multiplication, division, and rounding is separated
from actually propagating the inequality constraint. Views hence support separation of
concerns and can simplify the implementation of propagators. In particular, multiplica-
tion, division, and rounding need to be implemented only once for the scale-view: any
generic propagator can use scale-views.

Minus-views. Another common optimization is to implement binary and ternary vari-
ants of commonly used constraints. This optimization reduces the overhead with respect
to both time and memory as no array is needed.

Example 3 (Binary linear inequality). Consider a propagator for v1 +v2 ≤ c with views
v1 and v2 propagating as described in Example 2. With scale-views v1 = vscale(a1,x1)
and v2 = vscale(a2,x2) the propagator also implements a1 · x1 + a2 · x2 ≤ c provided
that a1,a2 > 0. However, x1 − x2 ≤ c cannot be obtained with scale-views. Even if
scale-views allowed negative constants, it would be inefficient to multiply, divide, and
round to just achieve negation.

A minus-view v = vminus(x) for a variable x provides operations such that v behaves
as −x. Its operations reflect that the smallest possible value for x is the largest possible
value for −x and vice versa:

v.getmin() :=−x.getmax() v.getmax() :=−x.getmin()
v.adjmin(n) := x.adjmax(−n) v.adjmax(n) := x.adjmin(−n)
v.excval(n) := x.excval(−n)

With minus-views, x1−x2 ≤ c can be obtained from an implementation of v1 +v2 ≤ c
with v1 = vid(x1) and v2 = vminus(x2). With an offset-view it is actually sufficient
to implement v1 + v2 ≤ 0. Then x1 + x2 ≤ c can be implemented by an identity-view
vid(x1) for v1 and an offset-view voffset(x2,−c) for v2. But again, given just v1 +v2 ≤ 0,
an implementation for x1− x2 ≤ c with c �= 0 cannot be obtained.

Minus-views implement the inverse for finite domain variables, thus all propagators
that are symmetric with respect to the sign of their arguments can take advantage of
minus views. An example for a pair of symmetric propagators on finite domain vari-
ables is minimum and maximum: max(x1, . . . ,xn) can be obtained from a the minimum
propagator with min(vminus(x1), . . . ,vminus(xn)). We will come back to inverse views
in the sections about Boolean and set constraints.

Derived views. It is unnecessarily restrictive to define views in terms of variables. The
actual requirement for a view is that its variable provides the same operations. It is
straightforward to make views generic themselves: views can be defined in terms of
other views. The only exception are identity-views as they serve the very purpose of
casting a variable into a view. Views such as offset, scale, and minus are called derived
views: they are derived from some other view.

With derived views being defined in terms of views, the first step to use a derived
view is to turn a variable into a view by an identity-view. For example, a minus-
view v for the variable x is obtained from a minus-view and an identity-view: v =
vminus(vid(x)).
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Example 4 (Binary linear inequality reconsidered). Using offset-views, minus-views,
and scale-views, all possible variants of binary linear inequalities can now be obtained
from a propagator for v1 + v2 ≤ 0. For example, a · x1 − x2 ≤ c with a > 0 can be
obtained with v1 = vscale(a,vid(x1)) and v2 = vminus(voffset(vid(x2),c)) or v2 =
voffset(vminus(vid(x2)),−c).

Scale-views reconsidered. The coefficient of a scale-view is restricted to be positive.
Allowing arbitrary non-zero constants a in a scale-view s = vscale(a,x) requires to take
the signedness of a into account. This can be seen for the following two operations (the
others are similar):

s.getmin() := if a < 0 then a · x.getmax() else a · x.getmin()
s.adjmax(n) := if a < 0 then x.adjmin(	n/a
) else x.adjmax(	n/a
)

This extension might be inefficient. Consider Example 2: inside the loop implement-
ing propagation on all views, the decision whether the coefficient in question is positive
or negative must be made. For modern computers, conditionals — in particular in tight
loops — can reduce performance considerably. A more efficient way is to restrict scale-
views to positive coefficients and use an additional minus-view for cases where negative
coefficients are required.

Example 5 (Linear inequalities reconsidered). An efficient way to implement a propa-
gator for linear inequality distinguishes positive and negative variables as in ∑n

i=1 xi +
∑m

i=1−yi ≤ c.
The propagator is simple: it consists of two parts, one for the xi and one for the yi.

Both parts share the same implementation used with different views. To propagate to
the xi, identity-views are used. To propagate to the yi, minus-views are used. Arbitrary
coefficients are obtained from scale-views as shown above.

The example shows that it can be useful to make parts of a propagator generic and reuse
these parts with different views. Puget presents in [10] an algorithm for the bounds-
consistent alldifferent. The paper presents only an algorithm for adjusting the upper
bounds of the variables xi and states that the lower bounds can be adjusted by using
the same algorithm on variables yi where yi =−xi. With views, this technique for sim-
plifying the presentation of an algorithm readily carries over to its implementation: the
implementation can be reused together with minus-views.

Constant-views. Derived views exploit that views do not need to be implemented in
terms of variables. This can be taken to the extreme in that a view has no access at all to
a variable. A constant-view v = vcon(c) for an integer c provides operations such that
v behaves as a variable x being equal to c:

v.getmin() := c v.getmax() := c
v.adjmin(n) := if n > c then fail v.adjmax(n) := if n < c then fail
v.excval(n) := if n = c then fail

Example 6 (Ternary linear inequalities). Another optimization for linear constraints
are ternary variants. Given a propagator for v1 + v2 + v3 ≤ c and using a constant-view
vcon(0) for one of the views vi, all binary variants as discussed earlier can be obtained.



124 C. Schulte and G. Tack

In summary, for linear inequalities (this carries over to linear equalities and disequali-
ties), views support many optimized special cases from just two implementations (the
general n-ary case and the ternary case). These implementations are simple as they do
not need to consider coefficients.

4 Boolean Views

Constraints on 0/1 variables are a special case of finite domain constraints. However,
specialized propagators can take advantage of the more precise knowledge about the
domain.

A Boolean-view of a finite domain variable extends the variable’s interface with op-
erations for testing its value (x.zero(), x.one(), x.none()) and assigning the variable
(x.assign one(), x.assign zero()). Propagators specialized for Boolean-views,
such as equality (b1 = b2), conjunction ((b1∧b2)⇔ b3), and equivalence ((b1 = b2)⇔
b3), can be implemented in a straightforward way using this interface.

Symmetric Boolean propagators. The inverse of a Boolean is its logical negation, im-
plemented by a negated Boolean-view. The operations for a negated Boolean-view
v = vneg(x) are straightforward:

v.zero() := x.one() v.one() := x.zero()
v.none() := x.none()
v.assign one() :=x.assign zero() v.assign zero() :=x.assign one()

Example 7 (Ternary disjunction). Boolean disjunction (x∨y)⇔ z can be implemented
as (¬x∧¬y) ⇔ ¬z. This translates directly to an instance of the Boolean conjunction
propagator. Similarly, other Boolean propagators such as exclusive or and implication
can be derived.

5 Domain Operations and Range Iterators

Today’s constraint programming systems support domain operations either only for ac-
cess or by means of an explicitly represented abstract datatype. In this paper, we propose
domain operations based on range iterators. These operations are shown to be simple,
expressive, and efficient. Additionally, range iterators are essential for views as pre-
sented in Sect. 6.

Range iterators. A range iterator r for a range sequence s = 〈[ni .. mi]〉k
i=1 allows to

iterate over s: each of the [ni .. mi] can be obtained in sequential order but only one at
a time. A range iterator r provides the following operations: r.done() tests whether all
ranges have been iterated, r.next() moves to the next range, and r.min() and r.max()
return the minimum and maximum value for the current range. By set(r) we refer to the
set defined by an iterator r (which must coincide with set(s)).

A possible implementation of a range iterator r for s maintains an index ir which is
initially ir = 1, the operations can then be defined as:
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r.done() := ir > k r.next() := (ir ← ir + 1)
r.min() := nir r.max() := mir

A range iterator hides its implementation. Iteration can be by position as above, but it
can also be by traversing a list. The latter is particularly interesting if variable domains
are implemented as lists of ranges themselves.

Iterators are consumed by iteration. Hence, if the same sequence needs to be iterated
twice, a fresh iterator is needed. If iteration is cheap, a reset-operation for an iterator
can be provided so that multiple iterations are supported by the same iterator. For more
expensive iterators, a solution is discussed later.

Domain operations. Variables are extended with operations to access and modify their
domains with range iterators. For a variable x, the operation x.getdom() returns a range
iterator for ranges(dom(x)). For a range iterator r the operation x.setdom(r) updates
dom(x) to set(r) provided that set(r) ⊆ dom(x). The responsibility for ensuring that
set(r) ⊆ dom(x) is left to the programmer and hence requires careful consideration.
Later richer (and safe) domain operations are introduced. The operation x.setdom(r)
is generic with respect to r: any range iterator can be used.

Domain operations can offer a substantial improvement over value operations, if
many values need to be removed from a variable domain simultaneously. Assume a typ-
ical implementation of a variable domain D which organizes ranges(D) = 〈[ni .. mi]〉k

i=1
as a linked-list. Removing a single element from D takes O(k) time and might increase
the length of the linked-list by one (introducing an additional hole). Hence, in the worst
case, removing l elements takes O(l(k + l)) time. With domain operations based on it-
erators, removal takes O(k + l) time, as the update can be implemented as one linear
pass over the linked list.

Range iterators serve as simplistic abstract datatype to describe finite sets of integers.
However, they provide some essential advantages over an explicit set representation.
First, any range iterator regardless of its implementation can be used to update the do-
main of a variable. This turns out to allow for simple, efficient, and expressive updates
of variable domains. Second, no costly memory management is required to maintain a
range iterator as it provides access to only one range at a time. Third, iterators are es-
sential in providing domain operations on variable views as will be discussed in Sect. 6.

Intersection iterators. Let us consider intersection as an example for computing with
range iterators. Intersection is computed by an intersection iterator r = iinter(a,b), tak-
ing two range iterators a and b as input where set(r) = set(a)∩ set(b). The intersection
iterator maintains integers n and m for storing the smallest and largest value of its cur-
rent range. When initialized, the operation r.next() is executed once. The operations
are shown in Figure 1.

The repeat-loop iterates a and b until their ranges overlap. The tests whether a or
b are done ensure that no operation is performed on a done iterator. The remainder
computes the resulting range and prepares for computing a next range.

The iterators a and b can be arbitrary iterators (again, the intersection iterator is
generic), so it is easy to obtain an iterator that computes the intersection of three iter-
ators by using two intersection iterators. Intersection is but one example for a generic
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r.done() := a.done()∨b.done()
r.min() := n
r.max() := m
r.next() := if a.done()∨b.done() then return

repeat
while ¬a.done()∧ (a.max() < b.min()) do a.next()
if a.done() then return
while ¬b.done()∧ (b.max() < a.min()) do b.next()
if b.done() then return

until a.max()≥ b.min()
n ← max(a.min(),b.min()); m ← min(a.max(),b.max())
if a.max() < b.max() then a.next() else b.next()

Fig. 1. Operations of an intersection iterator

iterator, other useful iterators are for example: iunion(a,b) for iterating the union of a
and b, iminus(a,b) for iterating the set difference of a and b, and icompl(a) for iterating
the complement of a with respect to some fixed universe.

Example 8 (Propagating equality). Consider a propagator that implements domain-
consistent equality: x = y (assuming that x and y are variables, views are discussed later).
The propagator can be implemented as follows: get range iterators for x and y by rx =
x.getdom() and ry = y.getdom(), create an intersection iterator ri = iinter(rx,ry),
update one of the variable domains by x.setdom(ri), and copy the domain from x to y
by y.setdom(x.getdom()).

Cache-iterators. The above example suggests that for some propagators it is better
to actually create an intermediate representation of the range sequence computed by
an iterator. The intermediate representation can be reused as often as needed. This is
achieved by a cache-iterator: it takes an arbitrary range iterator as input, iterates it
completely, and stores the obtained ranges in an array. Its actual operations then use the
array. The cache-iterator also implements a reset operation as discussed above. By this,
the possibly costly input iterator is used only once, while the cache-iterator can be used
as often as needed.

Richer domain operations. With the help of iterators, richer domain operations are
effortless. For a variable x and a range iterator r, the operation x.adjdom(r) replaces
dom(x) by dom(x)∩set(r), whereas x.excdom(r) replaces dom(x) by dom(x)\ set(r):

x.adjdom(r) := x.setdom(iinter(x.getdom(),r))
x.excdom(r) := x.setdom(iminus(x.getdom(),r))

Value versus range iterators. Another design choice is to base domain operations on
value iterators: iterate values rather than ranges of a set. This is not efficient: a value
sequence is considerably longer than a range sequence (in particular for the common
case of a singleton range sequence).

For implementing propagators, however, it can be simpler to iterate values. This can
be achieved by a range-to-value iterator. A value iterator v has the operations v.done(),
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v.next(), and v.val() to access the current value. A range-to-value iterator takes a
range iterator as input and returns a value iterator iterating the values of the range se-
quence. The inverse is a value-to-range iterator: it takes as input a value iterator and
returns the corresponding range iterator.

Iterators as adaptors. Global constraints are typically implemented by a propagator
computing over some involved data structure, such as for example a variable-value
graph for domain-consistent alldifferent [12]. After propagation, the new variable do-
mains must be transferred from the data structure to the variables. This can be achieved
by using a range or value iterator as adaptor. The adaptor operates on the data structure
and iterates the range or value sequence for a particular variable. The iterator then can
be passed to the appropriate domain operation.

6 Variable Views with Domain Operations

This section discusses domain operations for variable views using iterators.

Identity and constant views. Domain operations for identity-views and constant-views
are straightforward. The domain operations for an identity-view v = vid(x) use the do-
main operations on x: v.getdom() := x.getdom() and v.setdom(r) := x.setdom(r).
For a constant-view v = vcon(c), the operation v.getdom() returns an iterator for the
singleton range sequence 〈[c .. c]〉. The operation v.setdom(r) just checks whether the
range sequence of r is empty.

Derived views. Domain operations for an offset-view voffset(v,c) are provided by an
offset-iterator. The operations of an offset-iterator o for a range iterator r and an integer
c (created by ioffset(r,c)) are as follows:

o.min() := r.min()+ c o.max() := r.max()+ c
o.done() := r.done() o.next() := r.next()

The domain operations for an offset view v = voffset(x,c) are as follows:

v.getdom() := ioffset(x.getdom(),c) v.setdom(r) := x.setdom(ioffset(r,−c))

For minus-views we just give the range sequence as iteration is obvious. For a given
range sequence 〈[ni .. mi]〉k

i=1, the negative sequence is obtained by reversal and sign
change as 〈[−mk−i+1 .. −nk−i+1]〉k

i=1. The same iterator for this sequence can be used
both for setdom and getdom operations. Note that the iterator is quite complicated
as it changes direction of the range sequence, possible implementations are discussed
in Sect. 8.

Assume a scale-view s = vscale(a,v) with a > 0 and 〈[ni .. mi]〉k
i=1 being a range

sequence for v. If a = 1, the range sequence remains unchanged. Otherwise, the cor-
responding range sequence for s is 〈{a · n1},{a · (n1 + 1)}, . . . ,{a ·m1}, . . . ,{a · nk},
{a · (nk + 1)}, . . . ,{a ·mk}〉.

Assume that 〈[ni .. mi]〉k
i=1 is a range sequence for s. Then for 1 ≤ i ≤ k the ranges

[�ni/a� .. 	mi/a
] correspond to the required variable domain for v, however they do not
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necessarily form a range sequence as the ranges might be empty, overlapping, or adja-
cent. Iterating the range sequence is simple by skipping empty ranges and conjoining
overlapping or adjacent ranges.

Consistency. An important issue is how views affect the consistency of a propagator.
Let us first consider all views except scale-views. These views compute bijections on the
values as well as on the ranges of a domain D. A bounds (domain) consistent propagator
for a constraint C with variables x1, . . . ,xn establishes bounds (domain) consistency for
the constraint C with all the variables replaced by vk(xk) (if vk computes the view of xk).

Scale-views only compute bijections on values: a range does not remain a range
after multiplication. This implies that bounds consistent propagators do not establish
bounds consistency on scale-views. Consider for example a bounds consistent propa-
gator for alldifferent. With x,y,z ∈ {1,2}, alldifferent(4x,4y,4z) cannot detect failure,
while alldifferent(x,y,z) can. Note that this is not a limitation of our approach but a
property of multiplication.

7 Views for Set Constraints

Views and iterators readily carry over to other constraint domains. This section shows
how to apply them to finite sets.

Finite sets. Most systems approximate the domain of a finite set variable by a greatest
lower and least upper bound [3]: dom(x)= (glb(x), lub(x)). The fundamental operations
are similar to domain operations on finite domain variables: x.getglb() returns glb(x),
x.getlub() returns lub(x), x.adjglb(D) updates dom(x) to (glb(x)∪D, lub(x)), and
x.adjlub(D) updates dom(x) to (glb(x), lub(x)∩D).

All these operations take sets as arguments or return them. As the abstract datatype
we use for representing sets is an iterator, iterators play the central role here. In fact,
range iterators provide exactly the operations that set propagators need: union, intersec-
tion, and complement. Most propagators thus do not require temporary data structures.

As for finite domain variables, set propagators now operate on set views. The obvious
views for set variables are the identity view and constant-views – like the empty set, the
universe, or some arbitrary set. Constant-views again help derive binary propagators
from ternary ones. For example, s1 ∩ s2 = s3 implements set disjointness if s3 is the
constant empty set.

Symmetric set constraints. The inverse of a set variable is its complement. A comple-
ment view v = vcompl(x) of a set view x can be easily derived using the iterators already
introduced:

v.getglb() := icompl(x.getlub()) v.getlub() := icompl(x.getglb())
v.adjglb(D) := x.adjlub(icompl(D)) v.adjlub(D) := x.adjglb(icompl(D))

The propagators for symmetric constraints over Boolean views readily carry over to
sets: x1 = x2∪ x3 can be implemented as vcompl(x1) = vcompl(x2)∩vcompl(x3), and
s1 = s2 \ s3 is equivalent to s1 = s2∩vcompl(s3).
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Cross-domain views. With finite domain and set constraints in a single system, cross-
domain views come into play. The most obvious cross-domain view is a finite domain
variable viewed as singleton set. Using generic propagators, this immediately leads to
domain-connecting constraints.

Cross-domain views can support more than one implementation for the same variable
type. Set variables, for example, can be implemented with lower and upper bounds or
with their full domain using ROBDDs [7]. A cross-domain view allows lower/upper
bound propagators to operate on ROBDD-based sets, reusing propagators for which no
efficient BDD representation exists.

Finite domain constraints from set propagators. Singleton-views can also be used to
derive pure finite domain constraints from set propagators. For example, the constraint
same([x1, . . . ,xn], [y1, . . . ,ym]) states that the two sequences of finite domain variables
take the same values. Using singleton views,

⋃n
i=1{xi} =

⋃m
j=1{y j} yields an imple-

mentation for this constraint. If m = n, and all variables must take different values, a
disjoint union can be used instead.

8 Implementation

The presented architecture can be implemented as an orthogonal layer of abstraction for
any constraint programming system. This section presents the fundamental mechanisms
necessary for iterators and views.

Polymorphism. The implementation of generic propagators, views, and iterators re-
quires polymorphism: propagators operate on different views, domain operations and it-
erators on different iterators. Both subtype polymorphism (through inheritance in Java,
inheritance and virtual methods in C++) and parametric polymorphism (through tem-
plates in C++, generics in Java, polymorphic functions in ML or Haskell) can be used.

In C++, parametric polymorphism through templates is resolved at compile-time, and
the generated code is monomorphic. This enables the compiler to perform aggressive
optimizations, in particular inlining. The hope is that the additional layer of abstraction
can be optimized away entirely. Some ML compilers also apply monomorphization,
so similar results could be achieved. Java generics are compiled into casts and virtual
method calls, any optimization is left to the just-in-time compiler.

Achieving high efficiency in C++ with templates sacrifices expressiveness. Instantia-
tion can only happen at compile-time. Hence, either C++ must be used for modeling, or
all potentially required propagator variants must be provided by explicit instantiation.
The choice which propagator to use can however be made at runtime: for linear equa-
tions, for instance, we can test if all coefficients are units, or all are positive, and post
the respective optimized propagators. In Gecode, we currently only use template-based
polymorphism.

For the instantiation of templates as well as for inlining, the code that is instantiated
or inlined must be available at compile time of the code that uses it. This is why most
of the actual code in Gecode resides in C++ header files, slowing down compilation of
the system. On the interface level however, no templates are used, such that the header
files needed for using the library are reasonably small.
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System requirements. Variable views and range iterators can be added as an orthogonal
extension to existing systems. While value operations are not critical as discussed in
Sect. 2, depending on which domain operations a system provides, efficiency can differ.
In the worst case, domain operations need to be translated into value operations. This
would decrease efficiency considerably, however intermediate computations on range
iterators would still be carried out efficiently.

A particularly challenging aspect is reversal of range sequences required for the
minus-iterator. One approach to implement reversal is to extend all iterators such that
they can iterate both backwards and forwards. Another approach is similar to a cache-
iterator: store the ranges generated from the input iterator in an array and iterate in
reverse order from the array. In Gecode, we have chosen so far the latter approach due
to its simplicity. We are going to explore also the former approach: as variable domains
in Gecode are provided as doubly-linked lists, iteration in both directions can be pro-
vided efficiently.

9 Analysis and Evaluation

This section analyzes the impact different implementations of iterators and views have
on efficiency. Two aspects are evaluated: compile-time polymorphism versus run-time
polymorphism, and iterators versus temporary data structures.

The experiments use the Gecode C++ (version 1.0.0) constraint programming library
[2]. All tests were carried out on a Intel Pentium IV with 2.8GHz and 1GB of RAM,
using Linux and the GNU C++ compiler, version 3.4.3. Runtimes are the average of
20 runs, with a coefficient of deviation less than 2% for all benchmarks. Gecode is
competitive in efficiency with state-of-the art systems, a comparison is available on the
Gecode web pages [2].

The optimized column in Table 1 gives the time in milliseconds of the optimized
system, the other columns are relative to optimized. The examples used are standard
benchmarks, the first group using only finite domain constraints, the second group using
mainly set constraints.

Code inspection. A thorough inspection of the code generated by the GNU C++ compiler
and the Microsoft Visual C++ compiler shows that they actually perform the optimiza-
tions we consider essential. Operations on both views and iterators are inlined entirely
and thus implemented in the most efficient way. The abstractions do not impose a run-
time penalty (compared to a system without views and iterators).

Templates versus virtual methods. As the previous section suggested, in C++, compile-
time polymorphism using templates is far more efficient than virtual method calls. To
evaluate this, we changed the basic operations of finite domain views such that they
cannot be inlined. The required changes are rather involved, so we did not try the same
for iterators and set views. An implementation based on virtual methods will typically
exhibit an even higher overhead. Table 1 shows the results in column no-inline. Function
calls that are not inlined cause a runtime overhead between 29% and 58%.

Temporary data structures. One important claim is that iterators are advantageous be-
cause they avoid temporary data structures. Table 1 shows in column temporary that
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Table 1. Runtime comparison

Benchmark optimized no-inline temporary
time in ms relative %

Alpha 122.85 141.30 103.70
Donald 0.64 155.60 114.70
Golomb 10 (bound) 1 260.50 158.20 101.10
Golomb 10 (domain) 2 064.00 129.70 100.00
Magic Sequence 500 192.38 129.80 101.40
Magic Square 6 0.88 133.40 105.20
Partition 32 6 930,00 135.50 101.40
Photo 143.15 131.30 99.60
Queens 100 1.90 132.20 99.30
Crew 3.38 — 191.10
Golf 8-4-9 498.00 — 271.40
Hamming 20-3-32 1 496.00 — 200.70
Steiner 9 124.08 — 191.00

computing temporary data structures has limited impact (about 3%) on finite domain
variables, but considerable impact for set constraints (up to 171% overhead). Tempo-
rary data structures have been emulated by wrapping all iterators in a cache-iterator as
described in Sect. 5.

Applicability. Deriving several instances from a single propagator implementation sig-
nificantly reduces the overall amount of code that needs to be written. In Gecode, 31
finite domain propagators are instantiated from 12 generic propagators, 9 Boolean prop-
agators from 4 generic propagators, and 22 set propagators from 9 generic propagators.
The generic propagators make up approximately 3800 lines of sources code, saving
approximately 4800 lines of code to be written, tested, and maintained.

Obviously, views and iterators are no silver bullet. The mechanism only yields effi-
cient propagators if the compiler can generate the code that would otherwise have been
hand-written. If, for example, set complement views are used extensively, the overhead
compared to a hand-written propagator can become prohibitive.

10 Conclusion and Future Work

The paper has introduced an architecture decoupling propagators from variables based
on views and range iterators. We have argued how to make propagators generic, simpler,
and reusable with views for different constraints. We have introduced range iterators as
abstractions for efficient domain operations compatible with views. The architecture
has been shown to be applicable to many finite domain and finite set constraints. Using
parametric polymorphism for views and iterators leads to an efficient implementation
that incurs no runtime cost.

Future Work. An obvious route for future work is to explore richer variable views.
Possible candidates are sums and products of variables going beyond a single variable
per view: the challenge here will be to provide efficient range iterators.
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This paper explores views only for implementation purposes. A related question
is whether views can also be useful for modeling or for automatic transformation of
models.
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Abstract. We adopt Benders’ decomposition algorithm to solve
scenario-based Stochastic Constraint Programs (SCPs) with linear re-
course. Rather than attempting to solve SCPs via a monolithic model, we
show that one can iteratively solve a collection of smaller sub-problems
and arrive at a solution to the entire problem. In this approach, decision
variables corresponding to the initial stage and linear recourse actions
are grouped into two sub-problems. The sub-problem corresponding to
the recourse action further decomposes into independent problems, each
of which is a representation of a single scenario. Our computational ex-
perience on stochastic versions of the well-known template design and
warehouse location problems shows that, for linear recourse SCPs, Ben-
ders’ decomposition algorithm provides a very efficient solution method.

1 Introduction

Stochastic constraint programming (SCP, see [12, 15]) extends constraint pro-
gramming to deal with both decision variables, which can be set by the decision-
maker, and stochastic variables, which follow some discrete probability distrib-
ution function. This framework is designed to model a wide variety of decision
problems involving uncertainty and probability. Examples include nurse roster-
ing given an uncertain workload and constructing a balanced bond portfolio.

Tarim et al. [15] provide a semantics for stochastic constraint programs based
on scenarios, where a scenario is a possible set of values for the stochastic vari-
ables. Based on this semantics, they compile stochastic constraint programs down
into conventional (non-stochastic) constraint programs. The advantage of this
compilation is that existing constraint solvers can be used without modification.
However, the number of scenarios grows exponentially with the number of de-
cision stages, where each stage consists of a set of decision variables and a set
of stochastic variables whose combined assignments determine the structure of
the next stage. Tarim et al. propose a number of scenario reduction algorithms
to reduce the scenario tree considered. These algorithms determine a subset of
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scenarios and a redistribution of probabilities relative to the preserved scenarios.
Generally, however, this approach yields sub-optimal solutions.

This paper presents Benders’ decomposition (BD) algorithm as an optimisa-
tion method for stochastic constraint programs with linear recourse (SCPwLR).
SCPwLR constitutes an important subgroup of stochastic constraint programs.
In this type of SCP the initial stage decisions involve discrete variables, whereas
the following recourse actions comprise only continuous decision variables. A
typical example of SCPwLR is the Warehouse Location Problem (WLP) (see
[10], [11] and [13]) with stochastic demand. In Section 5, the capacitated version
of the WLP with stochastic demand is addressed, along with a stochastic ver-
sion of the Template Design problem [14], and the computational performance
of Benders’ algorithm is investigated.

The paper is organised as follows. Section 2 provides background, including
an overview of Benders decomposition. Section 3 introduces the linear recourse
stochastic constraint programs and an application of BD to such programs. Sec-
tion 4 gives an illustrative example of BD applied to SCPwLR by means of
the classical news vendor problem. In the following section, the computational
efficiency of BD is investigated. Section 6 concludes the paper and points out
important future work.

2 Background

This section gives the necessary background detail in stochastic constraint pro-
gramming and Benders decomposition. We begin with the former.

2.1 Stochastic Constraint Programming

A stochastic constraint satisfaction problem [12] consists of a 6-tuple 〈X ,S,D,
P , C, θ〉. X is a set of decision variables, and S is a set of stochastic variables. D
is a function mapping each element of X and each element of S to a domain of
potential values. A decision variable x ∈ X is assigned a value from its domain.
P is a function mapping each element of S to a probability distribution for its
associated domain. C is a set of constraints, where a constraint c ∈ C on vari-
ables xi, . . . , xj specifies a subset of the Cartesian product D(xi)× . . .× D(xj)
indicating mutually-compatible variable assignments. The subset of C that con-
strain at least one variable in S are chance constraints. θ is a function mapping
each chance constraint to the interval [0,1], indicating the fraction of scenarios
in which the constraint must be satisfied. Note that a chance constraint with a
threshold of 1 is equivalent to a hard constraint.

A stochastic CSP consists of a number of decision stages. In a one-stage
stochastic CSP, the decision variables are set before the stochastic variables.
In an n-stage stochastic CSP, X and S are partitioned into n disjoint sets,
X1, . . . ,Xn and S1, . . . ,Sn. To solve an n-stage stochastic CSP an assignment
to the variables in X1 must be found such that, given random values for S1,
assignments can be found for X2 such that, given random values for S2, . . .,
assignments can be found for Xn so that, given random values for Sn, the hard
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constraints are satisfied and the chance constraints are satisfied in the specified
fraction of scenarios. As noted in the introduction, the SCPwLR is a 2-stage
stochastic CSP in which the domains of X1 are discrete, but the domains of X2
are continuous. Furthermore, the constraints on X2 are all linear.

2.2 Benders Decomposition

Although Benders’ decomposition algorithm dates back to the 1960s and there
is now a sizeable OR literature in this area extending the original approach,
it has only recently been used by the constraint programming community in
developing hybrid models. The reader is directed to Benoist et al. [3], Xia et al.
[17], Eremin and Wallace [4], Hooker and Ottosson [7], Thorsteinsson [16], Jain
and Grossmann [9] for applications of BD in constraint programming.

Benders decomposition [2, 5] was presented for solving models of the type:

max{cT x + f(y)|Ax + F (y) ≤ b, x ∈ R
p
+, y ∈ S} (1)

where x ∈ R
p
+ (the p-dimensional non-negative Euclidean space), y ∈ R

q, and S
is an arbitrary subset of R

q. Furthermore, A is an (m, p) matrix, f(y) is a scalar
function and F (y) an m-component vector function both defined on S, and b
and c are fixed vectors in R

m and R
p, respectively.

A key concept in Benders’ algorithm is that of partitioning the variables into
two sets – x and y – and projecting the problem onto the complicating variables,
y. Benders’ method decomposes this model in such a way that it can be solved
as an alternating sequence of linear programs and programs of “complicating”
variables. In the case of Eq.(1), once y is fixed to ȳ, the initial linear program is:

f(ȳ) + min{(b− F (ȳ))λ|AT λ ≥ c, λ ∈ R
m
+}, (2)

In other words, the algorithm partitions the given problem in Eq.(1) into two
such subproblems: a programming problem (which may be linear, non-linear,
discrete, etc.) defined on S, and a linear programming problem defined in R

p
+.

An example is the mixed-integer programming problem in which certain vari-
ables may assume any value on a given interval, whereas others are restricted to
integral values only. Then, in order to avoid the laborious calculation of a com-
plete set of constraints for the feasible region in the first problem, a multi-step
procedure is designed leading, in a finite number of steps, to a set of constraints
determining an optimum solution of the given problem.

The classic BD algorithm was proposed for mixed-integer linear programming
problems, the cut generation of which is based on the duality theorem of linear
programming. The algorithm functions as follows: It determines trial values for
the addressed problem by solving a program called the master problem – the
program of complicating variables. The cost of this trial plan is determined
using the so-called slave problem, Eq.(2). The slave problem also calculates
dual multipliers, λ, which measure the marginal change in the trial plan. These
dual multipliers are used to form new constraints that are added to the mas-
ter problem, which is then re-solved to determine a new trial plan. The process
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continues alternately solving the master and slave problems, until the algorithm
has found an optimal plan or one that is within an acceptable tolerance of
optimality.

3 Benders Decomposition Applied to SCPwLR

In this section, BD is proposed as a solution method for SCPwLR. We consider
only the 2-stage SCPwLR, but the method can easily be extended to address
multi-stage SCPwLR without loss of generality. The method described is a hybrid
since it requires a collaboration of CP and LP methods.

As mentioned, BD partitions the decision variables into two sets, x and y.
For SCPwLR, partitioning is made with respect to the two decision stages: the
first stage decision variables, which constitute the set of complicating variables
y, form a CP model, and, since the recourse action is assumed to be linear,
the second stage decision variables form an LP model. Hence, the “master”
problem is a CP, whereas the “slave” problem, corresponding to the scenarios
and the recourse actions taken, is an LP. In this context, Benders decomposition
achieves separability of the second stage decisions, solving a separate LP for each
scenario.

Consider the following 2-stage SCPwLR: min {f(y)+
∑K

k=1 pkQk(y)|y ∈ Y }.
Here, k indexes the finitely-many scenarios, with pk the probability of scenario
k. The first-stage variables y are set before the scenario is observed. After the
kth scenario is observed, the set of second-stage decision variables xk are set.
The cost (assumed to be linear) of the second stage in scenario k is Qk(y) =
min{qkx|Wkx = hk−Tky, x ≥ 0}. That is, x is a recourse, which must be chosen
so as to satisfy some linear constraints in the least costly way.

We assume that recourse is complete, i.e., for any choice of y and scenario,
there is always a non-empty set of x, {x|Wkx = hk − Tky, x ≥ 0} �= ∅. The
objective is to minimize the expected total costs of both stages.

The deterministic equivalent model is a large-scale problem, which simulta-
neously selects the first-stage variables y and the second-stage variables xk for
every scenario k.
SCPwLR Model:

z = min {f(y) +
K∑

k=1

pkqkxk | Tky + Wkxk = hk, xk ≥ 0, y ∈ Y } (3)

3.1 Independent Subproblems

Given an arbitrary first stage decision y, define a function Qk(y) equal to the
optimum of the second stage for each scenario k = 1, ..., K:
Slave (Primal) Model :

Qk(y) = min {qkxk |Wkxk = hk − Tky, xk ≥ 0} (4)
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Now, an upper bound on the optimal value of z, defined in (3), is:

f(y) +
K∑

k=1

pkQk(y) (5)

Under the assumption of complete recourse, the linear programming dual of
the second-stage problem for scenario k, as given in (4), is the linear program:
Slave (Dual) Model :

Qk(y) = max {(hk − Tky)λk | WT
k λk ≤ qk, λk free} (6)

Note that the constraints are now independent of y; in other words, the fea-
sible region is not affected by the choice of y. Denote by Λk = {λk|WT

k λk ≤ qk}
the polyhedral feasible region of the second-stage problem for scenario k. De-
note by λ̂i

k the ith extreme point of Λk, i = 1, ..., Ik, where Ik is the to-
tal number of extreme points of the problem for scenario k. By enumerating
the large, but finite, number of extreme points of Λk, we can write, Qk(y) =
maxi=1,...,Ik

{λ̂i
k(hk−Tky)}, which demonstrates that Qk(y) is a piecewise-linear

convex function.

3.2 Complete and Partial Master Problems

Benders’ “complete master problem” then uses this representation of Qk(y) to
provide an alternative method for evaluating z,
Complete Master Model :

z = min {f(y) +
K∑

k=1

pk max
i=1,...,Ik

{λ̂i
k(hk − Tky)} | y ∈ Y } (7)

While it is possible in principle to solve the problem using Benders’ complete
master problem, in practice the magnitude of the number of dual extreme points
makes it prohibitively expensive. However, if a subset of the dual extreme points
of Λk are available then we obtain an underestimate of Qk(y), which we denote:

Q
′
k(y) = max

i=1,...,Mk

{λ̂i
k(hk − Tky)} (8)

where Mk ≤ Ik.
Using dual information obtained after M evaluations of Qk(y), we obtain a

“partial master problem”, which provides a lower bound on the solution of z:
Partial Master Model :

min {f(y) +
K∑

k=1

pk max
i=1,...,Mk

{λ̂i
k(hk − Tky)} | y ∈ Y } (9)

However, there is no guarantee that the partial master problem yields a
bounded solution. If it produces an unbounded solution then the direction of
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Algorithm 1. BD-SCPwLR
input : Set of scenarios, S

z = min{f(y) + ∀k∈S pkqkxk|Tky + Wkxk = hk, xk ≥ 0, y ∈ Y }
output: {z∗, y∗, x∗

k}
begin

ȳ ← an initial feasible y
c ← f(ȳ)
up ← ∞
low ← −∞
∀k ∈ S, Cutk ← ∅
while up − low > ε do

for k ∈ S do

Slavek ← Qk(ȳ) = max{(hk − Tk ȳ)λk|W T
k λk ≤ qk, λk free}

λk ← Solve(Slavek)
Cutk ← Cutk ∪ {λk(hk − Tky)}

c ← f(ȳ) + ∀k∈S pkQk(ȳ)
if c < up then up ← c

Master ← min{f(y) + ∀k∈S pk max{Cutk}|y ∈ Y }
ȳ ← Solve(Master)
c ← min{f(ȳ) + ∀k∈S pk max{Cutk|y = ȳ}}
if c > low then low ← c

return z∗ ← low, y∗ ← ȳ, ∀k ∈ S x∗
k ← dual vars from Solve(Slavek)

end

the extreme ray must be determined and the Benders cut, 0 ≥ λ̂r
k(hk − Tky),

must be added accordingly to bound the unbounded polyhedral set.
Benders’ algorithm solves the current “partial master problem”, obtaining a

new y (a new trial solution) and an underestimate
∑K

k=1 pkQ
′
k(y) of the associ-

ated expected second-stage cost.

3.3 Iterative Process

The actual expected second-stage cost,
∑K

k=1 pkQk(y), is then evaluated by solv-
ing the second-stage problem for each scenario. Additional terms, in the form
of {λ̂k(hk − Tky)}, are added to the partial master problem to complete the
iteration. Each additional term is actually another cut added to the model.

At each iteration of Benders’ algorithm, then, the slave problem solution pro-
vides an upper bound for z, and, the partial master solution provides a lower
bound for z. It can be proved that the above iterative procedure terminates in
a finite number of iterations. An attractive feature of this algorithm is the avail-
ability of upper and lower bounds on the optimal objective value, which both
converge to this value as optimality is achieved. The upper bound is generated
by a sequence of feasible solutions to the problem, so the best of these may be
taken as a solution if the procedure is terminated short of optimality.

The complete BD algorithm for the SCPwLR is presented in Algorithm 1.

4 An Illustrative Example: News Vendor Problem

We now illustrate the SCPwLR solution method using a modified version of
the well-known “news vendor problem”, a stochastic inventory replenishment
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problem which can be described as follows. Given a stochastic distribution for the
demand of a product, what is the optimal order quantity, y∗, if only one order can
be placed before actual demand is observed. Assume we have no initial inventory.
The decision maker has to order an amount y ≥ 0 at unit price c = 3. Unsold
goods can be returned to the supplier with a salvage value of v = 1. In case of high
demand, the firm expedites to avert an impending stockout with a cost of e = 8
per unit of excess demand. The maximum amount of units that can be ordered
is initially R = 20. However, the quota can be increased by r = [11, 13, 15, 17] in
a nested manner, following a fixed payment of h = [10, 12, 14, 16] which is also
nested. Therefore, the maximum quota of 76 units can be obtained with a cost
of 52. Demand is a discrete random variable denoted by ξ. ξ takes the values
of {15(0.1), 25(0.2), 35(0.3), 45(0.3), 55(0.1)}, in which the values in parentheses
are the probabilities, p.

A stochastic constraint program for the above problem is as follows:

min cy +
∑4

i=1 hiki +
∑5

s=1 ps(ex1s − vx2s)
s.t.
y + x1s − x2s = ξs, s = 1, ..., 5∑4

i=1 riki + 20 >= y
ki = 0 ⇒ ki+1 = 0, ki ∈ {0, 1}, i = 1, ..., 3

where x1s and x2s denote expedited order and salvage amounts, respectively.
In the above model, y and ki denote the first-stage decision variables, x1s and

x2s are the second-stage decision variables, where s denotes a scenario, and the
cost term

∑5
s=1 ps(ex1s − vx2s) corresponds to the expected recourse cost. This

problem has linear recourse. This partitioning of decision variables yields the
following master and slave problems:

Master Problem
min cy +

∑4
i=1 hiki+∑5

s=1 ps max{λ̂s(ξs − y)}
subject to∑4

i=1 riki + 20 >= y
ki = 0 ⇒ ki+1 = 0 i = 1, ..., 3
ki ∈ {0, 1}

Slave Problems s = 1, ..., 5
max (ξs − y)λs

subject to
λs ≤ e
λs ≥ v
λsfree

Table 1 presents the step-by-step application of Benders’ algorithm to our
SCPwLR problem.

We start with a feasible solution of y = 0 and k = [1, 1, 1, 1], which is ac-
tually the worst possible ordering policy. At the first iteration 5 independent
trivial slave problems are solved. The optimal solutions are λ1,...,5 = 8. Next we
calculate the upper bound that these solutions imply. Eq.(5) provides an upper
bound on the optimal solution to the original problem, which is 340 here. At the
second step of the first iteration the partial master problem is solved with the
added Benders cuts, max{8(ξs − y)}, giving a lower bound of −40. Subsequent
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Table 1. Steps of Benders’ Decomposition

Problem Iteration y∗ k∗ λ∗ obj value Lower Bound Upper Bound
Initial values 0 0 [1,1,1,1] – – −∞ +∞

Slave 1 – – [8,8,8,8,8] 340 – 340
Master 1 76 [1,1,1,1] – -40 -40 –
Slave 2 – – [1,1,1,1,1] 240 – 240

Master 2 44 [1,1,0,0] – 155.8 155.8 –
Slave 3 – – [1,1,1,8,8] 155.8 – 155.8

iterations of the algorithm can be followed from Table 1. In this instance the
lower and upper bounds converge to the optimal solution of 155.8 in five steps.

5 Computational Experiments

This section presents computational results of using Benders’ Decomposition
in SCPwLR on the capacitated version of the Warehouse Location Problem
(CWLP) (see [1], [6], [10], [11] and [13]), and stochastic version of the Template
Design Problem [14].

5.1 Stochastic Capacitated Warehouse Location Problem

Let I = {1, ..., N} be potential warehouse locations to supply a uniform product.
A facility can be opened in any location i ∈ I. Opening a facility at location
i has a non-negative fixed cost, fi. Each open facility i can provide a limited
amount Ci of commodity. Let J = {1, ..., M} denote stores that are supplied
by the open warehouses. For any pair (i, j) given, there is a unit production
and transportation cost gij ≥ 0. Each store can be supplied by exactly one
warehouse. The probabilistic customer demands, ξj , are only known following
stores’ order placements to warehouses. Stores incur a fixed penalty cost for each
unit they backlog, ej , and fixed holding cost for each unit of excess inventory, hj ,
they have. The goal is to determine a subset of the set of potential warehouse
locations at which to operate warehouses, and an assignment of all clients to
these facilities so as to minimize the expected total cost of operating the system.
This problem is a generalisation of the well-known set covering problem and,
therefore, an NP-hard problem in the strong sense.

A constraint model for the deterministic version of the above problem is given
in [8]. This model is extended to comply with the stochastic demand assumption.
The decision variables are:

– ki ∈ {0, 1} denoting whether warehouses i is in operation or not,
– uj ∈ I showing the supplier for store j,
– yuj ,j ≥ 0 is the amount warehouse uj delivers to store j,
– x+

j,s and x−
j,s denote the excess inventory and shortage, respectively, at the

end of the period at store j, if scenario s ∈ S is realised.
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The certainty equivalent CP model is

min
∑
j∈J

guj ,jyuj ,j +
∑
i∈I

fiki+
∑
j∈J

∑
s∈S

ps(ejx
−
j,s + hjx

+
j,s)

s.t.
kuj = 1 ∀j ∈ J∑
j∈J

yuj ,j(uj = i) ≤ Ci ∀i ∈ I

yuj ,j − ξj,s = x+
j,s − x−

j,s ∀j ∈ J,∀s ∈ S

In the above formulation, the first stage (ki, uj , yuj ,j) and second stage (x+
j,s,

x−
j,s) decision variables are employed to partition the given model. In this case,

the master and slave problems for the stochastic CWLP are defined as

Master Problem
min

∑
j∈J guj ,jyuj ,j +

∑
i∈I fiki+∑

s∈S max{ps

∑
j∈J λ̂j,s(ξj,s − yuj ,j)}

s.t.
kuj = 1, ∀j ∈ J∑

j∈J yuj ,j(uj = i) ≤ Ci, ∀i ∈ I

Slave Problems ∀s ∈ S, ∀j ∈ J

max (ξj,s − yuj ,j)λj,s

s.t.
−hj ≤ λj,s ≤ ej

λj,s free

Although the slave problems are expressed in a linear program structure, in
which λj,s are dual decision variables, the simplicity of the resultant independent
linear programs can be exploited to solve the problems to optimality without
resorting to Linear Programming. The optimal solution to any sub-problem is
in the form:

λ∗
j,s =

{
−hj if ξj,s − yuj ,j ≤ 0

ej if ξj,s − yuj ,j ≥ 0 , ∀s ∈ S, ∀j ∈ J (10)

The objective function of the master problem represents a “multiple-cut”
approach to the Benders’ decomposition. In this version, each scenario con-
tributes to the cut generation process with a single cut. This excessive num-
ber of cuts may increase the size of the master problem to the point at which
finding a solution is prohibitively long. Alternative approach is to aggregate
scenario cuts into one, so as to reduce the detrimental effect of size on the so-
lution performance. This so-called “single-cut” version is then in the form of
Φ ≥ max{

∑
s

∑
j ps(ξj,s − yuj ,j)λ̂j,s}, which leads to the objective function:

min
∑
j∈J

guj ,jyuj ,j +
∑
i∈I

fiki + Φ. (11)

Although the single-cut approach does not provide cuts as strong as the multiple-
cut approach, it is still computationally less expensive.

Experiments were conducted on 50 SCWLP instances using a 1.2 GHz com-
puter. These instances vary mainly in numbers of warehouses (between 2 to 10),
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stores (between 2 to 5) and scenarios (between 4 to 1331). The holding cost is
taken as 1 throughout the experiments. Three different shortage cost values are
used: 4, 6 and 8. The warehouse capacities are chosen in the range of [20,110];
fixed operating costs, [30,120]; random demands, [5,50]; transportation costs,
[1,4]. We assume that the number of states random demand variables have in
one instance is the same for all stores. Given n random variable states and j
stores, the number of scenarios in an instance is nj .

In the first step of the experiment, instances were modelled as a stochastic
constraint program whose formulation is given above. The SCP models were
solved using OPLStudio Solver6.0 with a time limit of 1 hour. The upper bounds
for variables are chosen as follows: for yj and x−

j , maximum possible demand
for store j; for x+

j , the difference between the maximum and minimum demand
values. The variable ordering heuristic employed assigns uj , kuj , and yuj ,j in that
order. The solution time (in seconds) and the number of nodes visited during
search are given in Table 2 under the column heading “SCP”.

Step two of the experiment repeated the first with an embedded linear relax-
ation. The linear relaxation enables the solver to produce lower/upper bounds
by solving an LP at each node of the CP search tree. The constraint solver also
uses the LP solution to guide its search. The results of using embedded linear
relaxation are given in Table 2 in the next two columns with a heading “SCP
with LR”. We also tried using linear relaxation with the variable ordering used
in the first step. However, the results show that in this case linear relaxation
does not prune the search space further, but incurs overhead.

In the next step of the experiment, Benders decomposition was applied to the
test suite. The algorithm was implemented using ILOG Cplex9.0 and Solver6.0.
The initial feasible solution was defined by adopting a no-order policy for all
stores. However, since each store must be assigned to a warehouse, the least
costly warehouse is operated and its fixed cost is incurred to be able to serve
all stores. In this step, the “multiple-cut” version of BD was used. The results
are given under the heading “BD with Multiple-Cuts”. The results displayed in
column “step”, show the number of steps (solving a master or a slave problem
defines a single step) BD takes before obtaining and proving the optimality of
a solution. The column headed “Gap” gives the optimality gap for the first
feasible solution, which is in the 5% gap. This experiment was repeated with
“single-cuts”. The results are listed under the heading “BD with Single-Cuts”.

We experimented with two heuristics to test the utility of starting with a
more informed solution. In heuristic-I, an expected value problem is designed
to find an initial solution by replacing random demands with their maximum
possible values. In heuristic-II, half the value of the maximum demands are
taken as deterministic demand values. The deterministic CP models were solved
to generate initial solutions. Results are presented in Table 2.

From Eq.(10), it is clear that there are only two possible values – either −hj

or ej – for any dual variables λj of the subproblems. Therefore, it is possible to
built the “complete master” model, which can be solved to optimality without
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any Benders iteration, for this test problem. The complete master model is tried
on these 50 instances. However, the observed computational performance is very
discouraging. The solution times are on the average 100 times more than “BD
with Single-Cuts” solution times, and 2 times more than “SCP”.

The results in Table 2 show that monolithic SCP – either with variable or-
dering or linear relaxation – could not prove optimality in 11 instances under 1
hour. At termination, in only 2 instances the best-so-far feasible solutions were
optimal. The results also point out another strong side of BD approach. If an
optimality gap which is less than 5% is considered satisfactory, then the solution
time is halved on average for the addressed test suite. It should also be noted
that we obtained the optimal solutions in 8 out of 50 cases.

A multiple regression at confidence level 0.95 with a constant coefficient
0 gives us an insight to the BD algorithms’ exact behavior on SCWL prob-
lem. The dependent variable is defined as the ratio of the solution times st(.),
st(CP )/st(BDsingle) and independent variables of # warehouses, # stores, #
scenarios. The adjusted R2 is 0.83, which demonstrates that the overall regres-
sion model is meaningful. The regression coefficients are 4.76 (warehouses), -3.00
(stores) and 0.33 (scenarios). The corresponding t-statistics are 1.72, -0.49, 14.01,
hence only the “scenarios” coefficient is significant. The results indicate that as
the number of scenarios increases the performance of BD is more significant.

The two initial-solution heuristics give mixed results. In some instances the
overhead of solving an additional CP model to obtain a better starting solu-
tion is not worth the effort. However, cheaper heuristics that exploit the unique
structure of the problem addressed can be designed and the total solution time
performance can be improved.

5.2 Stochastic Template Design Problem

The deterministic template design problem (prob002 in CSPLib) is described
as follows. Given is a set of variations of a design, with a common shape and size
and such that the number of required “pressings” of each variation is known.
The problem is to design a set of templates, with a common capacity to which
each must be filled, by assigning one or more instances of a variation to each
template. A design should be chosen that minimises the total number of “runs”
of the templates required to satisfy the number of pressings required for each
variation. As an example, the variations might be for cartons for different flavours
of cat food, such as fish or chicken, where ten thousand fish cartons and twenty
thousand chicken cartons need to be printed. The problem would then be to
design a set of templates by assigning a number of fish and/or chicken designs to
each template such that a minimal number of runs of the templates is required
to print all thirty thousand cartons. In the stochastic version of the problem,
the demand for each variation is uncertain.

Proll and Smith address this problem by fixing the number of templates and
minimising the total number of pressings [14]. We adopt their model herein,
extending it to comply with the stochastic demand assumption. We use the
following notation: N , number of variations; T , number of templates (T=2, for
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all instances of the test suit); S, number of slots on each template; K, number
of scenarios (demand for each variation is uncertain); ch, scrap cost; cp, shortage
cost; ai,j , number of slots designated to variation i, on template j; Rj , number
of required “runs” of template j; xi, an auxiliary variable; di,k, demand for
variation i in scenario k; ei,k, total scrap (variation i in scenario k); bi,k, total
shortage (variation i in scenario k); pk, probability of observing scenario k.

The certainty equivalent CP model is:

min
∑N

i=1
∑K

k=1 pk(cpbik + cheik)
subject to∑N

i=1 aij = S, ∀j ∈ {1, ..., T},∑T
j=1 aijRj = xi, ∀i ∈ {1, ..., N}, and

xi = dik + eik − bik, ∀i ∈ {1, ..., N}, ∀k ∈ {1, ..., K}.

In the above formulation, the first stage (aij , Rj) and second stage (xi, eik,
bik) decision variables are employed to partition the given model. In this case,
the master and slave problems for the Stochastic Template Design Problem are
defined as

Master Problem
min

∑K
k=1 max{

∑N
i=1 pk(dik − xi)λ̂ik}

subject to∑N
i=1 aij = S, ∀j ∈ {1, ..., T}∑T
j=1 aijRj = xi, ∀i ∈ {1, ..., N}

Slave Problems,
∀i ∈ {1, ..., N}, ∀k ∈ {1, ..., K}
max (dik − xi)λik

subject to
−ch ≤ λik ≤ cp, λik free

Table 3. Experimental Results – Stochastic Template Design Problem

SCP Complete Benders BD with Multiple-Cuts BD with Single-Cuts
No N S Scen Time #choice Time #choice Time step gap Time step Time step gap Time step

1 3 6 10 340 846,584 190 845,660 4,400 13 0 4,400 13 9.5 33 4.1 7.9 29
2 3 9 10 1,400 3,401,506 780 3,400,897 – – – – – 8.1 31 4.8 7.4 26
3 4 2 10 230 703,957 140 694,949 3,100 27 4.0 2,100 25 62 43 3.7 42 36
4 4 3 10 470 1,153,468 270 1,145,436 5,500 23 0.6 3,100 21 41 39 4.7 26 32
5 4 4 10 1,900 4,165,262 1,100 4,159,062 – – – – – 190 49 4.3 130 40
6 4 5 10 690 1,630,615 380 1,627,743 – – – – – 380 41 3.4 380 36
7 4 6 10 – – 5,700 20,909,785 – – – – – 670 52 3.5 510 44
8 4 7 10 – – – – – – – – – 820 53 4.8 600 40
9 4 8 10 – – – – – – – – – 1,800 50 4.4 1,000 37

10 4 9 10 – – – – – – – – – 5,900 49 3.3 4,900 43
11 4 6 11 – – 6,800 21,302,918 – – – – – 480 51 4.1 410 44
12 4 6 12 – – – – – – – – – 1,100 52 4.6 640 41
13 4 6 13 – – – – – – – – – 190 58 4.9 160 43
14 4 6 14 – – – – – – – – – 1,300 57 3.3 760 42
15 4 6 15 – – – – – – – – – 790 53 3.5 780 42
16 4 6 16 – – – – – – – – – 1,800 55 4.4 1,500 40
17 4 6 17 – – – – – – – – – 540 54 4.8 370 38
18 4 6 18 – – – – – – – – – 290 53 3.7 230 40
19 4 6 19 – – – – – – – – – 590 61 3.9 500 49
20 4 6 20 – – – – – – – – – 400 59 4.2 360 40

Experiments, summarised in Table 3, were conducted on 20 stochastic tem-
plate design instances using an Intel Centrino 2GHz computer with 1GB RAM.
Allowed solution time was 2 hours. A dash in the table indicates this time was
exceeded without finding the optimal solution.
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We compared four different solution methods: stochastic constraint program-
ming (solved using Ilog OPLStudio and Solver 6.0), and three versions of Benders
Decomposition (solved using Ilog Cplex 9.0 and Solver 6.0). In the first, the com-
plete master problem, which can be solved to optimality without any Benders
iterations, was built and solved using Solver 6.0. In the second and third, the
multiple cut and single cut versions of BD were used. For the stochastic con-
straint program and complete Benders formulation, the number of choice points
explored to find and prove optimality are shown. For the latter two Benders
variations, the “step” column indicates the number of steps (solving a master or
a slave problem is counted as a step) BD takes before proving optimality. The
“Gap” column gives the optimality gap for the first feasible solution found with
an optimality gap of 5% or less.

The results show that monolithic SCP can solve only the smaller instances in
the time allowed. The performance of the complete Benders formulation is com-
parable, giving better times and solving two more instances. The performance of
the two BD approaches is at polar opposites. The multiple-cut variant performs
relatively poorly, solving fewer instances than SCP and taking much more time.
However, the single-cut variant is clearly the strongest approach that we tested,
solving all 20 instances.

6 Conclusion

This paper has aimed to enhance the effectiveness of the stochastic constraint
programming framework by extending the use of the well-known Benders’ de-
composition algorithm, which has proved to be useful in mathematical program-
ming, to solve stochastic constraint programs with linear recourse, SCPwLR.
First and second stage decision variables are used to decompose the stochastic
constraint program into master and slave problems. The unique structure of sto-
chastic constraint programs, which is based upon a scenario tree representation,
yields independent slave sub-problems, one for each scenario considered in the
scenario tree. This natural slave problem decomposition has the obvious benefit
of solving a set of small problems, and hence to a degree relieving the difficulty
of dealing with a large scenario tree.

In our test problems, it was shown that the slave problem decomposes into
trivial scenario problems, each of which is a boundary value problem and can be
solved simply by checking the objective function coefficient and deciding whether
the single decision variable takes the lower or the upper limit of its domain.
Computational experiments confirmed the potential of Benders’ decomposition
method as an efficient solution algorithm for these problems.

An attractive feature of this algorithm is the availability of upper bounds and
lower bounds produced by the slave and master problem solutions, respectively.
The upper bound is generated by a sequence of feasible solutions to the problem,
so the best of these may be taken as a solution if the procedure is terminated
short of optimality. Furthermore, the best-so-far lower bound can be used to
produce a metric for the optimality gap.
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Although at present we consider only 2-stage SCPwLR, the ideas presented
here can be generalised to n-stage SCPwLR without loss of generality. In this
case, Benders’ algorithm is applied in a recursive manner. We expect the per-
formance discrepancy between the monolithic model and the decomposed model
to be magnified as the number of stages grows. A further extension of this work
should consider the case in which the linear recourse assumption is relaxed and
recourse actions with complex structures are allowed. Hooker and Ottosson [7]
provide a method for generating Benders cuts in such situations by generalising
the linear programming dual of a sub-problem to an “inference” dual. We will
adopt this approach for general stochastic CSP.
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Abstract. In contrast to a proper symmetry, a weak symmetry acts only on a
subset of the variables and the weakly symmetric equivalent solutions preserve
the feasibility state only with respect to a subset of the constraints. Therefore,
breaking weak symmetries on the whole problem with standard techniques would
lead to a loss of solutions. Weak symmetries occur in different application fields
like planning, scheduling and manufacturing as well as in the fields of soft con-
straints. We introduce a technique that enables us to exploit weak symmetries and
state experimental results on a real world problem to show the gain in using this
technique.

1 Introduction

Weak symmetries act only on a subset of the variables and the weakly symmetric solu-
tions satisfy only a subset of the constraints of the problem. Therefore, weak symmetric
solutions preserve the state of feasibility only with respect to the subset of variables
the weak symmetry acts on and only for the constraints these variables satisfy. If two
solutions s1 and s2 are weakly symmetric there is in general no symmetry function that
maps s1 to s2 or vice versa. The solutions s1 and s2 are only symmetric with respect to
the variables the weak symmetry acts on. Weak symmetries occur in many fields of ap-
plications and have already been discovered and identified in planning, scheduling and
model checking (see [1] - [5]). In particular real world optimisation problems contain
weak symmetries. Often the objective function makes a symmetry weak. We will see an
example of such a problem in Section 5. A whole research area where weak symmetries
arise is soft constraints. Since weak symmetries are very common but not yet tackled,
symmetry breaking methods for weak symmetries are needed.

Symmetry breaking is crucial for the success of constraint programming to achieve
a better performance of the search process. Various techniques have been proposed for
symmetry handling. In general it is done by reformulating the model [6] excluding the
symmetry up-front via additional constraints [7], breaking it during the search [8, 9, 10]
or by a combination thereof. A considerable amount of work has already been done in
the fields of symmetry breaking (e.g. [6, 7, 8, 9, 10, 11, 12, 13]).

In contrast to a proper symmetry, a weak symmetry cannot be simply broken. This is
due to the modus operandi of symmetry breaking techniques. Symmetry breaking tech-
niques exclude all but one representative of each equivalence class of solutions from
the search tree. Therefore breaking a weak symmetry with standard techniques leads
to a loss of solutions. Nonetheless, we introduce a technique that enables us to break

B. Hnich et al. (Eds.): CSCLP 2005, LNAI 3978, pp. 149–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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weak symmetries without losing solutions. We decompose a problem P in a subprob-
lem P1 and P2, where P1 contains all the variables the weak symmetry acts on and all
constraints that are respected by symmetric solutions of these variables. Our technique
transforms the weak symmetry of P into a proper symmetry on P1. On this subproblem
the symmetry can be broken using all kinds of symmetry breaking mentioned above.
Therefore only one solution for each equivalence class is found in P1. An additional
variable (further on called SymVar) is used to model the symmetric equivalents of this
solution. The symmetric equivalents (determined by the solution of P1 and the SymVar)
are then passed successively to the rest of the problem encapsulated in P2. If a symmet-
ric equivalent satisfies the constraints of P2, the variables in P2 (that are not part of P1)
are assigned to search for a feasible solution to P . If it does not, a different symmetric
solution is passed to P2 until one satisfies P2. If none satisfies P2 a different solution to
P1 is sought.

Weak symmetry breaking does not conflict with proper symmetry breaking. It is pos-
sible to break the weak symmetry on a subproblem and break other existing symmetries
on the whole problem concurrently, making the symmetry breaking effort more power-
ful. Still, weak symmetries have to be detected by the modeller to apply our technique.
To our best knowledge up to now there is no approach that tackles the problem by mod-
elling. However, in [4] the problem is considered from a group theoretical background.

In Section 2 the formal background and basic definitions are given. Throughout the
paper we will consider the magic square problem as a running example to explain our
ideas. The problem description and a basic model of this problem is also given here.
Section 3 comprise the definition and theoretical ideas of weak symmetries while Sec-
tion 4 introduces our technique to handle weak symmetries with SymVars. Section 5
comprises a short introduction to a real world problem and the results on applying
SymVars to handle weak symmetries in this problem. Section 6 concludes the results
and gives an outlook to future work.

2 Formal Background and Prerequisites

First of all we fix our terminology.

Definition 1 (Constraint Satisfaction Problem – CSP)
A CSP is characterised by P = (X, D, C), where

– X = {x1, . . . , xn} is the set of variables;
– D = {d1, . . . , dn} is the set of the domains for the variables in X;
– C = {c1, . . . , cm} is the set of constraints, where each constraint states a relation

over a subset of variables.

For an optimisation problem we just extend this formulation to P = (X, D, C, h),
where X , D and C are defined as above and h is the objective function. 1

1 Note that in standard CP techniques the objective function h can be represented by a constraint
that tightens with the search. The objective value is then represented by a variable. Therefore,
it is sufficient to regard only satisfaction problems.
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Definition 2 ((Partial) Variable Assignment)
Consider a CSP P = (X, D, C).

In a variable assignment each variable xi ∈ X of P is assigned a value vi ∈ di.
In a partial variable assignment only a subset of the variables xi ∈ X of P is assigned
a value vi ∈ di.

Definition 3 ((Partial) Solution)
Consider a CSP P = (X, D, C).

If a variable assignment is consistent with all the constraints in C it is feasible and
called a solution to P .
If the assigned variables of a partial variable assignment are consistent with all the
constraints in C the partial variable assignment is feasible and called a partial solu-
tion to P .

Definition 4 (Solution Symmetry) [13]
Consider a CSP P = (X, D, C).

A solution symmetry of P is a permutation of the set X ×D that preserves the set
of solutions to P .

From now on we will speak of symmetries instead of solution symmetries. A symmetry
partitions the search space into classes of equivalent variable assignments. All variable
assignments in each class are either feasible or infeasible [8].

To illustrate weak symmetries we use a small well-known running example the magic
square problem. Here we state the problem description and a basic modelling approach.
Based on this model we introduce weak symmetries in the following sections.

Running Example: Magic Square Problem. In the magic square problem, the num-
bers 1, . . . , n2 have to be assigned to a n× n square such that the sum of the numbers
in each row, in each column and in both main diagonals are equal. The value m for this
sum necessarily satisfies m = n3+n

2 . A standard model is presented in the following:
Variables X :

– squareij , i, j ∈ N, N = {1, . . . n} (the magic square)

Domains D:

– ∀i, j ∈ N : squareij ∈ {1, . . . , n2} (all possible numbers)

Constraints C:

– ∀i ∈ N :
∑

j∈N squareij = m (each row sums up to m)
– ∀j ∈ N :

∑
i∈N squareij = m (each column sums up to m)

–
∑

i∈N squareii = m (diagonal sums up to m)
–

∑
i∈N squarei,n+1−i = m (anti diagonal sums up to m)

– alldifferent(square) (all numbers are assigned)

The magic square problem has the same symmetries as the n-queens problem, the ro-
tations and reflection of the matrix and the combination thereof – eight symmetries in
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total (including the identity) [8]. We refer to these kinds of symmetries as the chess-
board symmetries in the following. In addition certain combinations of row and column
permutations lead to symmetric solutions.

For example permuting the first with the second row and the last with the last but
one row and analogue the columns transforms a feasible magic square in a new feasible
magic square.

In the following we will neglect symmetry breaking constraints in the model and
state the constraints that break the weak symmetry only. However, symmetry breaking
constraints can be stated together with the weak symmetry breaking constraints.

3 Weak Symmetry

3.1 Weak Symmetry Definition

Weak symmetries act on problems with special properties. To characterize weak sym-
metries we first define weakly decomposable problems. In a weak decomposition of
a problem all variables and constraints that are respected by the weak symmetry are
gathered in one subproblem.

Definition 5 (Weakly Decomposable Problem)
A problem P = (X, D, C) is weakly decomposable if it decomposes into two subprob-
lems P1 = (X1, D1, C1) and P2 = (X2, D2, C2) with the following properties:

X1 ∩X2 �= ∅ (1)

X1 ∪X2 = X (2)

C1 ∪ C2 = C (3)

C1 ∩ C2 = ∅ (4)

C2 �= ∅ (5)

D1 = pr1(D) (6)

D2 = pr2(D) (7)

where pri denotes the projection to the subspace defined by the subset Xi of the vari-
ables in P .

The first condition states that P1 and P2 contain a subset of shared variables (namely
X1 ∩ X2). These variables have to assume the same values in both subproblems to
deliver a feasible solution to P . Therefore they link both problems. Without that re-
striction the problem would be properly decomposable. The second and third condition
states that none of the variables and constraints of the original problem P are lost. Fur-
thermore the third and fourth condition state that C1 and C2 is a partition of C. Basically
this is not necessary for feasibility. A constraint could be in both subsets (if defined on
X1 ∩X2 only) but would be redundant for one of the problems because the solution to
the other subproblem would already satisfy this constraint. Therefore, this is just a ques-
tion of efficiency. The fifth condition states that P2 is not allowed to be unconstrained.
However, note that this restriction does not hold for P1. This is since we want to group
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the symmetric data in P1 and a problem without constraints is perfectly symmetric.
Every CSP is weakly decomposable, and usually there will be multiple weak decompo-
sitions. However, we concentrate on weak decompositions where the weak symmetry
acts as a proper symmetry on P1.

Definition 6 (Weak Symmetry)
Consider a weakly decomposable problem P with a decomposition (P1, P2).

A symmetry f : X1 → X1 on P1 is called a weak symmetry on P with respect to
the decomposition (P1,P2) if it cannot be extended from X1 to a symmetry on X .

The intention of the decomposition of the problem is that X1 contains all symmetric
variables (and only those) and X2 contains the rest of the variables. The gain is that we
get a subproblem where the weak symmetry affects all variables and all constraints (P1)
and therefore acts as a proper symmetry on it and one subproblem that is not affected
by the weak symmetry (P2).

3.2 An Example: Magic Square Problem

The idea for the weak decomposition of the magic square problem is that P1 consists
of the problem to find a distribution of the numbers such that the row and column
constraints are satisfied but not necessarily the diagonal constraints. These constraints
are part of P2. This decomposition introduces the symmetries of row and column per-
mutation on P1. These symmetries are the weak symmetries of P . For the purpose of
simplicity we will concentrate on the weak symmetry of column permutations only.
This is no violation of the idea. In fact, this corresponds to partial symmetry breaking.

The weak decomposition of the magic square problem:
P1 (assigning the numbers with respect to the row and column constraints):

– X1 : squareij , i, j ∈ N, N = {1, . . . n} (the magic square)
– D1 : ∀i, j ∈ N : squareij ∈ {1, . . . , n2}
– C1:

• ∀i ∈ N :
∑

j∈N squareij = m (each row sums up to m)
• ∀j ∈ N :

∑
i∈N squareij = m (each column sums up to m)

• alldifferent(square) (all numbers are assigned)

P2 (check whether the solution of P1 also respects the diagonal constraints):

– X2 :
• squareii, i ∈ N (variables of the diagonal)
• squarei,n+1−i, i ∈ N (variables of the anti diagonal)

– D2 :
• ∀i ∈ N : squareii ∈ N
• ∀i ∈ N : squarei,n+1−i ∈ N

– C2:
•

∑
i∈N squareii = m (diagonal sums up to m)

•
∑

i∈N squarei,n+1−i = m (anti diagonal sums up to m)
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Note that the variables in P2 already have values assigned by P1 and none have to be
reconsidered in P2. Therefore the only task in P2 is to check whether the solution of P1
also satisfies P2. A (feasible) solution of P1 may now be infeasible with P2 since the
diagonal constraints are violated. However, a permutation of the solution of P1 (which
is still feasible for P1) may be also feasible for P2.

Example for a magic square of size 4 with the magic number m = 34:

4 5 11 14

7 16 9

1 15 8

13 12

10

5

7

10 1

13 12

11

15

14

9

8
3

4

16

36 6

22

The magic square on the left satisfies P1 but does not satisfy the diagonal constraints.
However, if the third and fourth column are permuted the resulting magic square satis-
fies also the diagonal constraints and therefore P2

3.3 Problems Containing Weak Symmetries

There are well known problems like the magic square problem that comprise weak sym-
metries under specific weak decompositions. However, weak symmetries do not only
occur in academical problems. More often they can be found in real world optimisa-
tion problems. An example of such a problem is investigated in Section 5. Introduc-
ing an objective function to a problem often yields weak symmetries, since different
variable assignments achieve different objective values. For example the asymmetric
TSP is weakly symmetric since reversing a tour leads to a different length of the tour.
A whole research area where weak symmetries arise are soft constraints. In soft con-
straints basically a solution is evaluated and the best solution found is returned. Thus, it
is very similar to optimisation. As a short example consider map colouring with differ-
ent weights for the colours used. Permutation of the colours in a solution may yield a
different value and therefore the solutions are weakly symmetric and not properly sym-
metric. Symmetry breaking in soft constraints is often not possible (since the symmetry
is actually a weak symmetry). Therefore, soft constraints problems where the hard ver-
sion of the problem comprises symmetries have weak symmetries that can be handled
by the technique introduced in the next section.

4 Breaking Weak Symmetries

As seen in the last section, weak symmetries occur in a great variety of problems, and
standard symmetry breaking methods cannot be applied to handle weak symmetries
successfully. Therefore new methods are needed to handle weak symmetries. Here we
introduce a new method that breaks weak symmetries without losing solutions.

4.1 Theoretical Idea

The challenge in weak symmetry breaking is actually not the symmetry breaking part
but not to lose solutions by breaking the weak symmetry. As mentioned earlier the
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weak symmetry is a proper symmetry on P1, and any method of symmetry breaking
can be used. However, by breaking the symmetry on P1, any solution sP1 of P1 will
represent its equivalence class of solutions. All these solutions have to be considered
when determining a solution to P . Even if sP1 does not satisfy P2 a different solution
π(sP1) in the same equivalence class may satisfy P2, where π(sP1) is a permutation of
sP1 .

Therefore we need a way to represent all these solutions in the search process. We
introduce a new variable that identifies which element of the equivalence class is repre-
sented in the further search process. This variable is the SymVar.

Definition 7 (Symmetry Variable)
Consider a CSP P = (X, D, C) with a weak decomposition (P1, P2) and a weak
symmetry f on P .

A symmetry variable (SymVar) π ∈ S[X1] represents the group of symmetric so-
lutions of f in P1. Its domain is the symmetric group on X1, denoted by S[X1].

If the SymVar is the identity then the solution passed to P2 is the one found in P1.
In any other case the permuted solution of P1 (which is equivalent with respect to the
weak symmetry) is passed to P2. The solution of P1 together with the assignment of
the SymVar represents a partial variable assignment to P2 and P . It is checked whether
it also satisfies the constraints of P2 and if so all variables in X2\X1 are assigned for
finding a solution to P2. If the partial assignment does not satisfy P2 a different element
of the equivalence class is considered by a different value for the SymVar. If none of
the elements satisfy P2 a new solution to P1 is sought. This way the whole problem is
investigated and no solution is lost. Note that only for solutions of P1 the SymVar is
instantiated.

Theorem 1 (Solution Preservation).
The solution space of P is totally reflected by the decomposition (P1, P2) and a SymVar
π such that every solution of P can be uniquely represented by a solution to P1, an
assignment to the SymVar and a solution to P2.

Proof. A solution of P yields a solution to P1 and P2 directly. π can be chosen as the
identity. A solution to P1, a SymVar assignment π ∈ S[X1] and a solution to P2 can be
transformed into a solution of P by assigning the permutation under π of the solution to
P1. P2 commits all variables xi ∈ {X2\X1} to P . Since π restores all solutions of P1
that are excluded by the weak symmetry breaking no solution is lost and the solution
space of P is totally reflected by the decomposition (P1, P2) and π.

4.2 Modelling Approach

In practice this concept of a single SymVar as a representative is not supported in con-
straint programming solvers on the level of modelling. Therefore instead of one variable
we use a set of variables. A feasible variable assignment to these variables then repre-
sents a specific element of the equivalence class.
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Definition 8 (Psym)
Consider a CSP P = (X, D, C) with a weak decomposition (P1, P2) and a weak
symmetry f on P .
Psym = (Xsym, Dsym, Csym) is a subproblem of P that models the weak symmetry f .
Xsym is the set of SymVars representing the variables of P1. Dsym is the domain for
all SymVars and Csym is the set of constraints that model the symmetric group induced
by f . A solution of Psym represents an element of the symmetric group induced by f .

If the weak symmetry is a permutation of n elements there would be n SymVars with a
domain of {1, . . . , n} and an alldifferent constraint ensuring that every feasible assign-
ment to Xsym is a permutation.

In the Magic Square Problem
Consider the column permutation to be weak. For each column of the matrix a SymVar
is introduced that represents all variables in this column. An assignment symColi = j
means that the column i is permuted to the position of column j.

Psym:

– Xsym:
• symColi, i ∈ N

– Dsym:
• ∀i ∈ N : symColi ∈ N

– Csym:
• alldifferent(symCol)

For the search process this means that the set of SymVars has to be assigned before
the specific element of the equivalence class is determined. Although more variables
have to be assigned when using a set of SymVars instead of a single SymVar this al-
lows some more flexibility in the approach. Firstly, it allows to steer the search for the
elements of the equivalence class by posting variable and value ordering constraints on
the set of SymVars. This way promising elements can be evaluated earlier which can be
crucial for constraint satisfaction where just one solution is needed. Secondly, a partial
assignment of the SymVars can be evaluated as infeasible with the constraints of P2.
Thereby the whole subgroup of elements represented by this partial SymVar assign-
ment can be pruned by simple backtracking. Note that weak symmetries may occur in
combination with proper symmetries in a problem formulation. That is not a problem.
The proper symmetry can be dealt with as usual while the weak symmetry is handled
as described in this article. Thus, it is possible to break all symmetries of a problem –
proper and weak – concurrently (as long as SymVars are introduced for the weak sym-
metries), making the symmetry breaking effort more powerful. Since weak symmetry
breaking does not exclude solutions of P no solution is lost. Proper symmetry breaking
does only exclude solutions that are symmetric on P . We just have to show that proper
symmetry breaking does not exclude a weakly symmetric solution. But since weakly
symmetric solutions cannot be mapped on each other (only with respect to the variables
in X1) they are not excluded by proper symmetry breaking by definition.

To solve P we consider the partial solution sPsym . When a solution is found, the
search backtracks and reconsiders values for the SymVars to determine a new solution.



The Challenge of Exploiting Weak Symmetries 157

All these solutions are symmetric equivalents to the solution sP1 . Only when the search
backtracks and variables in X1 are reconsidered, a solution for a different equivalence
class can be found.

By using SymVars we can break the symmetry in P1 but do not lose any symmetric
solution in an equivalence class.

The Complete Magic Square Problem Using SymVars
P :

– X :
• squareij , i, j ∈ N (the magic square)
• symColi, i ∈ N (the SymVars for the columns)

– D:
• ∀i, j ∈ N : squareij ∈ {1, . . . , n2}
• ∀i ∈ N : symColi ∈ N

– C:
• ∀i ∈ N :

∑
j∈N squareij = m (each row sums up to m)

• ∀j ∈ N :
∑

i∈N squareij = m (each column sums up to m)
• alldifferent(square) (all numbers are assigned)
• ∀i ∈ {2, . . . , n} : square1,i−1 < square1,i (orders the columns in increasing

order to break the column permutation)
•

∑
i∈N squarei,symColi = m (diagonal sums up to m)

•
∑

i∈N squarei,n+1−symColi
= m (anti diagonal sums up to m)

• alldifferent(symCol) (a permutation of the columns)

In the computational study we will only consider optimisation problems where P1 is
the basic problem, that is X2\X1 is just the optimisation variable and C2 just contains
the optimisation constraint (i.e. the optimisation function) and P2 imposes additional
constraints for optimisation.

4.3 Related Work

There is an approach by W. Harvey [4] that regards the problem of weak symmetries
from a group theoretical point of view. Basically the problem is regarded as a symmet-
ric relaxation. The idea is to relax some constraints on the problem which makes the
problem more symmetric. The symmetry is broken on the symmetric relaxation and
symmetric solutions are then derived by using the software package GAP [14].

The theory behind both approaches (the one considered in this article and that of W.
Harvey) is basically the same. The symmetric relaxation approach is somewhat more
generic, allowing more freedom in the realisation and implementation of the techniques
used to solve the problem. Therefore it seems very promising. The difference to our
approach is that the symmetric equivalents are computed via group theory instead of
using variables and constraints.

As mentioned in the introduction the strength in our approach is that it is based on
plain modelling. That means that it can be used for every constraint programming solver
and does not require software or self-written routines to adapt a problem suitably.

At the moment a comparison between the two approaches is not possible. However,
this is subject to future joint work for the author and W. Harvey.
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5 Experimental Results

In this section we present some experimental results of a relaxed real world problem
from the field of automated manufacturing. Due to space restrictions we only state an
informal problem description here. For a formal problem description of the original
problem see [15].

5.1 Problem Description

In the problem certain components must be mounted on PC boards by a mounting ma-
chine consisting of several mounting devices. The task is to maximise the workload of
the whole machine. We concentrate only on a subproblem of the whole solving process.
That is to find a setup of component types for the individual mounting devices to max-
imise the potential workload.2

The machine consists of several mounting devices. Each mounting device has access
to a set of component types (called setup) that are to be mounted on the PC boards. In
addition each mounting machine has only access to a part of the PC board layout and
can therefore only mount components inside this visibility area (see Figure 1). The PC
board layout is specified by a list of mounting tasks. A mounting task is specified by a
component type and a position where to mount this component type.

The problem is modelled as follows: The machine is represented by an m×n variable
matrix Am×n where m is the number of different component types that can be assigned
to a mounting device and n is the number of mounting devices on the machine. The
domain of variables aij ∈ A is the set of component types. An assignment aij = k
means that a component of type k is placed on the mounting device j in the ith slot.

The constraints:

– No component type may be assigned more than once to a column
– Certain component types may not be assigned together in a column
– Each component type achieves a certain workload when assigned to a column.

The workload differs from column to column. This represents the visibility of the
mounting device.

5.2 Weak Symmetry Modelling of the Problem

The weak symmetry of the problem is that the mounting devices are symmetric in terms
of assigning a setup. So a feasible setup is feasible independent from the mounting de-
vice it is assigned to. But each mounting device has a different visibility of the board.
So certain mounting tasks cannot be seen (and therefore not performed) by certain
mounting devices. That means a setup achieves different workloads depending to which
mounting device it is assigned. Therefore the permutation of the setups on the machine
is the weak symmetry.

2 The actual workload assigned to the devices is a subset of the workload determined in this
subproblem. But the higher the possible workload the higher the degree of freedom for the
concrete assigning problem not considered here.
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PC BoardMounting Tasks

Mounting Device

SetupComponent Types

Visibility

Fig. 1. A machine consisting of three mounting devices each with a setup of three components

This is modelled by introducing a SymVar placei for each setup i. An assignment
placei = j means that the ith setup is assigned to the jth mounting device on the
machine. In the model that means that the column i is permuted to the column j in the
matrix A representing the machine setup. To ensure that the assignment of the SymVars
is a permutation an alldifferent constraint is stated on them. The weak symmetry is
broken by stating column ordering constraints in P1.

5.3 Experimental Results

Instance Data. We tested about 100 randomly generated instances of the machine size
A8×20 (twenty mounting devices and eight component types in a setup). These are the
dimensions of real world instances. All instances use the same visibility (which yields
the workload) but different numbers of components per type and there are 80 different
component types.

The Approaches. The two competing approaches are the standard approach (a stan-
dard model of the problem) and the weak symmetry approach (altering the standard
approach by introducing SymVars). In both approaches values of the columns (i.e. the
assigned component types to the mounting device represented by this column) are or-
dered increasingly to disallow its elements to move along the rows. In the weak sym-
metry approach in addition the column permutation symmetry (which is the weak sym-
metry of the problem) is broken by ordering the columns lexicographically increasing
[10]. Both symmetries are broken by stating a set of constraints.
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Search Heuristics. We tried several heuristics for both approaches but we will only
consider a best-to-best comparison here to achieve reasonable results. The search
heuristic for the standard approach is a greedy approach. For each column the compo-
nent types achieving the highest workload are chosen. The component types are chosen
by increasing type number to avoid conflicts with the symmetry breaking constraints.

The search heuristic for the weak symmetry approach is to find a feasible matrix
assignment for the machine matrix (P1). Then a permutation of the setups (columns) is
determined greedily. This is done by determining for each setup the permutation where
it achieves the best value for the objective function.

Results. We used ILOG OPL to model the problem and solve it using ILOG OPL
Studio 3.5. We chose a time limit of ten minutes for the search process. This is the time
that can be spent in a real world scenario for finding a solution. Note that this is just a
fraction of the time it takes to solve the problem exhaustively.

In the table 1 the first column describes the number of the instance followed by the
technique used. The third and fourth column give the value and the time in seconds for
the first solution that is found. The fifth and sixth column give the same information
for the best found solution. We compared in in the seventh column after which time in
seconds the weak symmetry approach outperforms the standard approach in terms of
the quality of the solution. In the eighth column the total quality increase by using the
weak symmetry approach is given. In the last column the saving in runtime using the
weak symmetry approach for the best solution is given.

We compare how long it takes the two approaches to find the first solution and
what is the best solution they found within the time limit. Also we state the time
when the weak symmetry approach outperforms the standard approach. Also we state
the percentage increase for the quality of the best solution using the weak symme-
try approach compared to the standard approach and the percentage decrease in run-
time for the best solution using the weak symmetry approach compared to the standard
approach.

All instances yield comparable results so we present here only a subset of the results
due to space limitations. Nonetheless, this subset reflects the results of the instance set.

5.4 Conclusions of the Results

Quality of the Solutions. The first solution found by the standard approach is always
better than that of the weak symmetry approach. This is due to the fact that the standard
approach assigns the matrix greedily to the matrix. In the weak symmetry approach the
matrix is assigned without respect of the workload this assignment achieves. Only the
permutation is determined greedily. The matrix assignment cannot be done greedily in
the weak symmetry approach, since such an assignment inflicts with the weak symmetry
breaking constraints.

The best solution is always found by the weak symmetry approach. The relative
improvement ranges between 1 and 3 %.

Runtime. The first solution is mostly found earlier by the standard approach. However,
the weak symmetry approach has more variables and constraints such that the time in
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Table 1. The results for twenty instances of the test case

Instance Strategy First Solv Best Solv Weak Quality Runtime
Sol Time Sol Time outperforms Increase % Decrease %

1 Standard 836 0.7 855 557 – – –
Weak 777 1.5 876 58 27.4 s 2.5 89.6

2 Standard 842 0.6 858 574 – – –
Weak 785 1.5 880 115 12.0 s 2.6 80.0

3 Standard 837 1.0 860 385 – – –
Weak 821 1,4 878 129 3.4 s 2.1 66.5

4 Standard 845 0.6 858 467 – – –
Weak 760 1.4 871 308 33.0 s 1.5 34.0

5 Standard 843 0.7 857 133 – – –
Weak 818 1.4 881 71 24.0 s 2.8 46.6

6 Standard 835 0.8 857 154 – – –
Weak 796 1.4 883 51 11.4 s 3.0 66.9

7 Standard 839 0.7 854 214 – – –
Weak 794 1.4 881 48 11.4 s 3.2 77.6

8 Standard 837 0.7 850 230 – – –
Weak 785 1.4 879 45 8.2 s 3.4 80.4

9 Standard 839 0.7 853 263 – – –
Weak 788 1.5 875 52 8.3 s 2.6 80.2

10 Standard 840 0.7 856 551 – – –
Weak 772 1.4 882 55 11.6 s 3.0 90

11 Standard 842 0.7 863 404 – – –
Weak 770 1.4 878 177 30.5 s 1.7 56.2

12 Standard 839 27.0 861 551 – – –
Weak 769 1.5 873 197 1.5 s 1.4 64.2

13 Standard 841 14.6 857 217 – – –
Weak 764 1.4 872 60 1.4 s 1.8 72.4

14 Standard 839 0.6 855 484 – – –
Weak 757 1.5 865 57 41.4 s 1.2 88.2

15 Standard 837 0.7 857 430 – – –
Weak 750 1.4 867 57 13 s 1.2 86.7

16 Standard 837 14,7 855 412 – – –
Weak 768 1.5 866 61 41.7 s 1.3 85.2

17 Standard 835 26.7 857 347 – – –
Weak 773 1.4 869 195 1.5 s 1.4 43.8

18 Standard 835 0.7 851 518 – – –
Weak 761 1.5 859 66 49.1 s 0.9 87.3

19 Standard 835 0.7 851 145 – – –
Weak 790 1.5 869 59 7.5 s 2.1 59.3

20 Standard 832 0.7 853 537 – – –
Weak 770 1.5 872 63 9.3 s 2.2 88.3

each decision node in the search tree takes more time. In some of the instances the
standard approach found the first solution very late. These instances were harder to
solve. However, the weak symmetry approach had no problem with these instances.
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The time to find a first solution was in all instances about 1.5 seconds. Therefore this
approach seems very robust.

The weak symmetry approach achieves very good performance for finding the best
solutions. The saving in runtime reaches from 30 to 90 % and on average over 70 %.
Therefore this approach finds a local optimum in a relatively short time. And the quality
of this local optimum is always better than that of the standard approach.

Also the weak symmetry approach outperforms the standard approach very fast.
Within the first minute all the solutions found by the weak symmetry approach achieve
a better objective value. In many cases this is achieved within ten seconds and for the
instances where the standard approach finds the first solution very late the weak sym-
metry approach dominates from the beginning.

5.5 Concluding the Results

The weak symmetry approach outperforms the standard approach clearly in this sce-
nario in terms of the quality of the best solution and more impressively in terms of
runtime and domination.

Although the first solution is found later and is worse than the solution of the standard
approach, the weak symmetry approach dominates very fast and until the end of the run.

6 Conclusions and Outlook

We introduced the theory and definitions of weak symmetries and presented a remod-
elling technique that enables us to break weak symmetries without losing solutions.
Also we showed a real world application from the field of automated manufacturing
that comprises weak symmetries. We presented results on a relaxed version of this
problem. These results yield that using our technique to handle weak symmetries is
promising.

There are several research directions on weak symmetries. It would be interesting
to investigate weak symmetries on soft constraint problems or other problems. Also
automatic detection of weak symmetries seems to be a very interesting task.

Also investigate the search with different filtering algorithms would be interesting.
Also achieving back propagation from P2 to P1 is desirable and not investigated yet.

A computational study on combining weak symmetry breaking with dynamic sym-
metry breaking techniques like SBDx [8, 9] or symmetry breaking constraints [10] is
interesting, since in this approach the symmetry breaking was done statically by stating
constraints up-front.
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Abstract. Problems that can be sampled randomly are a good source of test 
suites for comparing quality of constraint satisfaction techniques. Quasigroup 
problems are representatives of structured random problems that are closer to 
real-life problems and hence more suitable for benchmarking. In this paper, we 
describe in detail generators for Quasigroup Completion Problem (QCP) and 
Quasigroups with Holes (QWH). In particular, we study an improvement of the 
generator for QCP that produces a larger number of satisfiable problems by us-
ing propagation through the all-different constraint. We also re-formulate the 
algorithm for generating QWH that is much faster than the original generator. 
Finally, we provide an experimental comparison of all presented generators. 

1   Introduction 

Generators of random samples for problems are a useful source of problem instances 
for testing constraint satisfaction algorithms. Writing generators for some types of 
problems, like a Random CSP [11], is not a complicated task but it could be more 
complicated for other types of problems, typically for structured problems like qua-
sigroup problems. This paper gives all necessary information for researchers that 
would like to use quasigroup problems as benchmarks. 

The quasigroup problems have been first proposed as a benchmark domain for con-
straint satisfaction algorithms in [6]. The basic idea is to find a completion of a partial 
Latin square representing the multiplication table of a quasigroup. Hence, the problem 
is called a Quasigroup Completion Problem (QCP). The generator for a QCP should 
produce a partial Latin square that can be completed to a full Latin square. However, 
the generator proposed in [6], which fills random values in randomly selected cells of 
the table, falls short on this task especially when more values should be filled in. 
Gomez and Selman [6] observed a behavior of the generator similar to phase 
transition with satisfiable instances on one side, unsatisfiable instances on the other 
side, and hard instances in between.  Shaw et al. [14] proposed an improvement of 
this generator based on propagation through the all-different constraint [13]. Their 
algorithm generates a larger number of satisfiable instances that can be used for test-
ing solvers. It preserves the phase transition behavior but it generates satisfiable in-
stances on both sides and it makes the phase transition crispier. 
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The difficulty of QCP generators is that they do not guarantee production of satis-
fiable instances only. This complicates usage of such generators for testing incom-
plete solving algorithms because when the solving algorithm did not find a solution, it 
is not clear whether no solution exists or the algorithm is not able to find it. Therefore 
another benchmark domain based on quasigroups has been proposed in [1] that 
guarantees generation of satisfiable instances. This benchmark domain uses the same 
idea as a QCP, that is completing a partially filled Latin square, but it differs in how 
the incomplete Latin square is obtained. The idea is to punch holes into a randomly 
generated complete Latin square so the obtained partial Latin square can surely be 
completed. Hence, this benchmark domain is called Quasigroups With Holes (QWH). 
Unfortunately, the authors of QWH did not provide all the details on generating QWH 
problems. It is a pity because generating randomly distributed QWH problems is a 
non-trivial task based on strong theoretical results presented in [9]. 

The contribution of this paper is threefold. First, we will give all the details on al-
gorithms for generating random instances of QCP and QWH problems so interested 
readers will be able to write their own generators based on the presented algorithms. 
Second, we will propose a reformulated algorithm for generating QWH problems that 
is significantly faster then the original algorithm from [9]. Last but not least, we will 
present an empirical comparison of all presented generators so readers can select one 
that best suits their needs. 

The paper is structured as follows. In the next section, we will introduce the termi-
nology on quasigroups and Latin squares. In Section 3, we will describe the Qua-
sigroup Completion Problem and its relevance to real-world problems and we will 
discuss two generators of QCP. In Section 4, the ideas behind Quasigroups With 
Holes will be explained, the original QWH generator will be presented in detail, and 
the reformulated generator will be introduced. The paper is concluded by an experi-
mental evaluation of the quality and time efficiency of the generators. 

2   Quasigroups and Latin Squares 

A quasigroup is an ordered pair (Q, •), where Q is a set and • is a binary operation on 
Q such that the equations a•x=b and y•a=b are uniquely solvable for every pair of 
elements a, b in Q. The cardinality of the set Q is called an order of the quasigroup. 
Let N be the order of the quasigroup Q then the multiplication table of Q is a table of 
size N×N such that the cell at the coordinates (x,y) contains the result of the operation 
x•y (for simplicity we expect Q to be a totally ordered discrete set and so the rows and 
columns of the multiplication table can be indexed by the elements of Q). The multi-
plication table of the quasigroup must satisfy a property that in each row of the table, 
each element of the set Q occurs exactly once, and similarly in each column of the 
table, each element of Q occurs exactly once (see Figure 1A). Thus, the multiplication 
table defines a Latin square. 

We say that a Latin square of order N is partial or incomplete if the table of size 
N×N is partially filled in such a way that no symbol occurs twice in a row or in a 
column (see Figure 1B). If the table is filled completely then we are speaking about a 
complete Latin square. Note that it is easy to generate a complete Latin square of any 
order. We take some permutation of the elements in Q. We put it in the first row of the 
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table, and, in each subsequent row, we shift the permutation one element to the right 
and the superfluous element on the right is filled in the first cell of the row (see Figure 
1C). However, this method does not produce every Latin square. In fact, generating 
any Latin square of a given order with a uniform probability is a non-trivial task [9]. 

4 1 3 2
31 4 2

4 12 3
2 1 43

4 2
1 2

13
2 4

A B C

1 2 3 4

12 3 4
1 23 4

1 2 34

 

Fig. 1. A Latin square (A), a partial Latin square (B), and a simple process of generating a 
complete Latin square (C) 

The problem of finding a complete Latin square can be stated as a constraint 
satisfaction problem in the following way. Assume, that the cells of a Latin square of 
order N are denoted by the variables with the domain {1,…,N}. Then the property of 
the Latin square can be described by a set of binary inequality constraints posted 
between every pair of variables that are either in the same row or in the same column. 
The constraint network for this CSP has N2 nodes representing the variables and 
N2(N-1) edges representing the binary constraints. The network is highly structured – 
there are 2N interconnected clusters of size N (each cluster connects the variables 
from a single row or a single column). Moreover, there exists a path of maximal 
length two between any two nodes so the constraint network has a so-called small 
world topology. Nowadays the binary inequality constraints in each row and column 
can be encapsulated into an all-different constraint which achieves stronger pruning 
and makes the problem easier to solve (but still cannot solve the problem of any order 
[5,8]). 

3   Quasigroup Completion Problem 

As we showed in the previous section, a Latin square can be modeled as a CSP so it 
can serve as a benchmark domain for constraint satisfaction algorithms. We also 
sketched a simple algorithm to find a complete Latin square so such a benchmark is 
not very challenging. Assume now, that some cells in the Latin square are pre-filled, 
we have a partial Latin square, and the task is to determine whether the empty cells 
can be filled in such a way that we obtain a complete Latin square. Gomez and Sel-
man [6] proposed this new benchmark based on completing partial Latin squares and 
they called it a Quasigroup Completion Problem (QCP). The problem is parameter-
ized by the order of a Latin square and by the number of filled cells. Formally, the 
Quasigroup Completion Problem is described by a pair N,p , where N is an order of 
the Latin square to be completed and p is a filling ratio, that is the ratio between the 
number of pre-filled cells and the total number of cells (N2). 
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Pre-assigning some values to variables modeling the Latin square introduces per-
turbations in the structure of the constraint network which makes the structure similar 
to that found in real-world domains like scheduling and experimental design [8]. A 
particular real-life problem that maps directly to the above mentioned problem of 
completing a partially filled Latin square is the problem of assigning wavelengths to 
routes in fiber-optic networks [10]. Note also that the Quasigroup Completion Prob-
lem is known to be an NP-complete problem [4]. Not surprisingly, the straightforward 
constraint model with the all-different constraints cannot be used alone to solve  
instances of higher order (34 and more) [8] and more sophisticated techniques like 
hybrid algorithms [8] or dual models with special value selection heuristics [5] are 
necessary. This makes the problem non-trivial and hence interesting as a benchmark 
for comparing constraint satisfaction techniques. This benchmark bridges the gap 
between purely random problems like a Random CSP and highly structured problems.  

The question now is how to generate random instances of QCP, in particular how to 
select the cells to be pre-filled for a given QCP N,p . One possible model could be 
selecting the cell to be filled with the probability p. Let us call it a model A similarly to 
the classification used for Random CSPs [11]. Another possibility is to select exactly 
pN2  cells to be filled, where X  means the closest (to X) integer between X and 0. 

Let us call it a model B. In this paper we will study the model B, where the cells to be 
filled are selected randomly and uniformly. We use a random generator that selects 
uniformly and randomly pN2  different elements from the set {0,…,N2-1}. Each such 
element z represents a position in the Latin square of order N that can be described by 
the coordinates 1+ z/N , 1+(z mod N)  (Figure 2). 

0 1 2 3
74 5 6

10 118 9
13 14 1512

 

Fig. 2. A linear encoding of the positions of cells in a Latin square of order 4 

The second open question is how to select a value to be assigned to a given cell. 
The basic requirement is that the values in cells in each row and in each column must 
be different. So, when selecting a value for the cell in the position x,y , this value 
must be different from the values already assigned to the cells of the row x and to the 
cells of the column y. We propose the following simple technique based on constraint 
propagation through binary inequalities. Latin square is modeled as a CSP as de-
scribed in the previous section using binary inequalities between the variables of the 
same row and of the same column. For a cell to be assigned (the cell selection process 
is described in the previous paragraph), we select randomly a value from the current 
domain of respective variable. Then the problem is made arc consistent which means 
that the value is removed from the variables of the same row and of the same column. 
Consequently, when selecting a value for the next cell, the domain contains only the 
values that are different from already assigned values in the same row and in the same 
column. This technique mimics the behavior of the original generator from [6]. It 
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ensures that only valid Latin squares are generated, that is no symbol occurs twice in 
a row or in a column. However, because of incompleteness of constraint propagation 
we cannot guarantee that a “completable” Latin square is found. Figure 3 shows a 
situation where a bad initial value selection makes filling of another cell impossible. 
Note that any generator attempting to generate values one by one suffers from this 
problem. 

1,4 1,3

2,31,2

 

Fig. 3. The problem of simple QCP generators. If value 1 is selected for the top left cell then no 
complete Latin square exists. 

When looking at Figure 3 we can see that if value 4 is selected for the top left cell 
then the above problem does not occur. Therefore, it might be useful to enhance the 
generator by allowing a shallow backtracking that can try another (randomly selected) 
value after an immediate failure. This process is repeated until a value is found or all 
values were tried. It is still possible that no value for the variable is found so this 
technique does not guarantee finding a valid Latin square but the hope is that it in-
creases chances to find one. Unfortunately, our preliminary experiments showed that 
this technique does not increase the number of generated valid instances (on average). 
Note that the generator should produce the random problems fast so its complexity 
should not be exponential. Therefore, we cannot use full backtracking (probably in-
complete search might be used but we did not try it yet). 

Another option how to improve chances of finding a value for the variable is 
strengthening constraint propagation to remove more inconsistent values from the 
domains. As we already mentioned, there is a natural way how to strengthen propaga-
tion in the constraint model for Latin squares – using the all-different constraint by 
Régin. This approach has already been proposed in [14] – we will present a detail 
experimental comparison of both generators later in the paper. It will show that the 
generator based on all-different constraints produces a higher number of satisfiable 
instances. 

4   Quasigroups with Holes 

As we already mentioned, the main problem of a QCP is that the generators cannot 
guarantee production of satisfiable benchmark instances which could cause problems 
when evaluating incomplete solving techniques. In the previous section we described 
a method that increases the number of satisfiable instances via strengthening con-
straint propagation, but this method still does not guarantee satisfiability (see the next 
section for experimental justification of these claims). It would be possible to accom-
pany the proposed generator by an algorithm that filters the unsatisfiable instances. 
Still, the problem is that for some parameters the generator does not produce a valid 
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instance and hence no satisfiable instance is available for evaluation. This happens 
typically in the area where the hardest problems settle (see the section on experi-
ments) so it would be beneficial if the generator produces satisfiable instances di-
rectly. Surprisingly, it is often difficult to develop a direct generator of satisfiable 
instances. The problem with such generators is that they should not be biased in the 
sense that the generator should produce any satisfiable instance with a uniform distri-
bution. Therefore, the simple generator of complete Latin squares described in Sec-
tion 2 is not appropriate because it produces Latin squares with a specific structure 
only (and hence, completing such Latin squares is not a difficult task). 

The paper [1] proposes a direct generator for satisfiable quasigroup problems. The 
idea is to generate a complete Latin square to which a fraction of holes is punched. 
The resulting incomplete Latin square is then guaranteed to be satisfiable. This prob-
lem is called Quasigroups With Holes (QWH). However, the problem of generating 
uniformly distributed Latin squares is non-trivial. Actually, the generator is not de-
scribed in [1] and the reader is referred to the paper [9] which describes the method 
and gives a theoretical justification. In the next paragraphs, we will survey the method 
from [9], we will present the QWH generator based directly on this method, and then 
we will reformulate the generator to work directly with the Latin squares. 

4.1   Original Generator  

Jacobson and Matthews [9] proposed a method for generating uniformly distributed 
random Latin squares by randomly traversing a graph, where nodes correspond to 
Latin squares and edges describe transformations between the Latin squares. They 
proved that the diameter of the graph is 4(N-1)2, where N is the order of the Latin 
square. It means that the minimal distance between two Latin squares is no greater 
than 4(N-1)2 so it is possible to obtain any Latin square from a given Latin square in 
4(N-1)2 moves. The QWH generator can be conceived as follows. We start with a 
Latin square generated by the method described in Figure 1C. After performing 
4(N-1)2 random moves we obtain any Latin square with uniform probability [9]. The 
open question is how to perform a move, that is, how to transform one Latin square 
into another Latin square. We will answer this question in the following paragraphs. 

To simplify description of moves, Jacobson and Matthews proposed to extend the 
graph by nodes describing so-called improper Latin squares where the condition of a 
Latin square is violated a “little”  (see below). Then the diameter of the new graph 
and hence the minimal distance between any two (proper or improper) nodes is 
bounded by 2(N-1)3 (for a formal proof see [9]). They represent the Latin square of 
order N by a contingency table f of size N×N×N that contains {0,1} values only. The 
condition on a Latin square (in each row and in each column, each element appears 
exactly once) is then equivalent to the formulas: 
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Basically, x and y describe the coordinates of the cell and z describes the element in 
the cell (x,y) if f(x,y,z)=1. Formula (a) says that exactly one element is assigned to the 
cell (x,y), formula (b) says that the element z appears exactly once in the row x, and 
formula (c) says that the element z appears exactly once in the column y. We call a 
Latin square with the above (proper) contingency table a proper Latin square. An 
improper Latin square is defined by the (improper) contingency table satisfying the 
conditions (a)-(c) but allowing exactly one element of the contingency table to con-
tain value -1. 

Now, it is easier to formulate the moves as operations over (proper and improper) 
contingency tables. Assume that we start with a proper contingency table. We select 
randomly a cell of f such that f(x,y,z) = 0 and we will try to increase this value by one 
which is equivalent to assigning the value z to the cell (x,y). Each line in f containing 
the cell (x,y,z) must hold a cell filled by one according to (a)-(c). Let x’, y’, and z’ be 
the indexes of these lines. These coordinates define a sub-cube in the contingency 
table with nodes at (x,y,z), (x,y,z’), (x,y’,z), (x’,y,z), (x’,y,z’), (x’,y’,z), (x,y’,z’), and 
(x’,y’,z’) (see Figure 4). If we increase the value in f(x,y,z) by one then we need to 
decrease the values in f(x,y,z’), f(x,y’,z), f(x’,y,z) by one to keep the conditions (a)-(c) 
valid. Next, the values in f(x’,y’,z), f(x,y’,z’), f(x’,y,z’) must be increased by one and 
finally the value in f(x’,y’,z’) must be decreased by one. If all these operations are 
performed then visibly the conditions (a)-(c) hold again. However, it may happen that 
the value in f(x’,y’,z’) will become -1, in the case that f(x’,y’,z’)=0, but this will be the 
only cell with a negative value (see Figure 4). 

x x’

y

y’

z

z’

0+1 1-1 

1-1 0+1

1-1 

0+1

0+1

?-1 

x x’

y

y’

z

z’

-1+1 1-1 

1-1 0+1

1-1 

0+1

0+1

?-1 

 

Fig. 4. A plus/minus one move in the proper (left) and improper (right) contingency table 

Notice that if we start with a cell such that f(x,y,z) = -1 (the contingency table is 
improper) then we can perform the same set of operations as above and again we will 
obtain either a proper or improper contingency table (Figure 4 right). Hence the above 
described mechanism specifies moves between proper and improper contingency 
tables. Notice that the cell (x,y,z) is chosen randomly for a proper contingency table, 
while this cell is unique in the improper contingency table. Conversely, points x’, y’, 
and z’ are unique in the proper table, while these points are chosen randomly in the 
improper table. This randomness is crucial to obtain random moves. Jacobson and 
Matthews showed that on average after N such random moves we will obtain a proper 
contingency table describing a Latin square of order N. Figure 5 shows the algorithm 
for a single move. By using information about the diameter of graph with nodes 
marked by Latin squares (see above) we propose to do at least 2(N-1)3 such moves 
and then stop when a proper contingency table is obtained. 
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move 
   find x,y,z s.t. 
     if f is improper then f(x,y,z)=-1 
     if f is proper then f(x,y,z)=0 
   find x’,y’,z’ s.t. f(x’,y,z)=f(x,y’,z)=f(x,y,z’)=1 
   // if f is proper then these points are unique 
   // if f is improper then there are two choices 
   //   for each point, select one point randomly 
   increase f(x,y,z),f(x,y’,z’),f(x’,y,z’),f(x’,y’,z) 
   decrease f(x,y,z’),f(x,y’,z),f(x’,y,z),f(x’,y’,z’) 
end move 

Fig. 5. The algorithm for move between contingency tables 

4.2   Reformulated Generator 

In the previous section we presented the algorithm for moves between proper and 
improper contingency tables. Notice that if the contingency table is improper, which 
happens when f(x’,y’,z’) becomes -1, then the next move starts with f(x’,y’,z’) that will 
be increased by one. Moreover, one of the cells f(x’,y’,v) or f(x’,y’,z) will be decreased 
by one, where v is the original value at position (x’,y’). This is because the improper 
contingency table describes the situation when two values, z and the original value v 
in (x’,y’), are assigned to the cell (x’,y’) at the same time (recall, that f(x’,y’,z) has 
been increased by one in the step preceding this situation). To prevent appearance of 
two elements in a single cell we propose to postpone assignment of z to the cell (x’,y’) 
to the next move. Before assigning the value we check whether the value in (x’,y’) is 
z’. If this is true then we put z there so we get a proper Latin square and we can stop 
the sequence of improper moves. Otherwise, we also assign the value z to the cell 
(x’,y’), but we take the original value in this cell and “propagate” it further. Figure 6 
describes how the values are moved between the cells. 
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Fig. 6. Shifting values in a Latin square when the value z should be placed in position (x,y) 

The above idea can be encoded using data structures describing directly a Latin 
square instead of its contingency table. Figure 7 shows the algorithm for moving 
between proper Latin squares directly. The move is started with a random position 
(x,y) and a random value z to be placed there: proper_move(x,y,z,z). When 
the procedure stops, a proper Latin square is obtained and another random move can 
be started. Notice that if the Latin square is improper then there are two positions in 
the row x and two positions in the column y where the value v is located. In such a 
case, one position in the column and one position in the row are selected randomly. If 
the position is selected deterministically, for example the first found position, then the 
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algorithm starts cycling! As in the original generator we propose to call the procedure 
proper_move at least 2(N-1)3 times (including the recursive calls inside 
proper_move) so every Latin square can be obtained with uniform probability. 

 
proper_move(x,y,z,v) 
  z’ ← table(x,y) 
  if z’=v then table(x,y) ← z, return 
  y’ ← a position (column) of cell with v in the row x 
  x’ ← a position (row) of cell with v in the column y 
   // if z=v then x’ and y’ are unique 
   //  otherwise there are two such positions, 
   //   one position is selected randomly 
  table(x,y) ← z 
  table(x,y’) ← z’ 
  table(x’,y) ← z’ 
  proper_move(x’,y’,v,z’) 
end proper_move 

Fig. 7. The algorithm for move between proper Latin squares 

5   Experimental Results 

We have implemented the presented generators using the clpfd library [3] of SICStus 
Prolog version 3.11.2. All presented results were accomplished under Windows XP 
Professional on 1.8 GHz Pentium 4 with 512 MB RAM. The running time was meas-
ured in milliseconds via the statistics predicate with the walltime parameter. 
The results of a hundred runs are presented. QCP-orig is the original QCP generator 
[6], QCP-alldiff is the generator using all-different constraints [14], QWH-orig is the 
QWH generator using contingency tables (Section 4.1), and QWH-new is the refor-
mulated QWH generator (Section 4.2). 

5.1   Generator Quality 

Generators of random problems are expected to produce problems in the whole spec-
trum of their parameters. In our first experiment, we measured the number of gener-
ated partial Latin squares relative to the number of attempts to generate a problem. 
Recall, that the generator should produce a partial Latin square, namely no symbol 
occurs twice in a row or in a column, with a given filling. Figure 8 shows the result 
for Latin squares of order 30 and different filling ratios. Notice that the original QCP 
generator falls short on the task of generating problems where more pre-filled cells 
are requested. Actually, the generator is not able to produce any instance when the 
filling ratio is greater than 72%. This is not surprising because the more cells should 
be pre-filled the higher probability is that no value can be found for some cell (see 
Figure 3). A similar behavior can be observed for the QCP-alldiff generator but 
thanks to stronger propagation via all-different constraints the chances to select a 
consistent value increases and hence the generator is still able to produce some in-
stances. It is a pity that the papers [6,14] proposing these generators did not mention 
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this feature, probably because the authors used Latin squares of small orders (below 
20) where this behavior cannot be observed. For the sake of completeness, let us high-
light that the QWH generators always produce a problem instance. 
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Fig. 8. The relative number of generated problems for the quasigroup problems of order 30  
( : QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new) 

The second feature that we focused on is the “hardness” of the generated problems. 
We used the presented generators to produce partial Latin squares of order 30 which 
is the border where the quasigroup problems are non-trivial but still solvable by stan-
dard constraint satisfaction techniques [8]. To solve the problem we used a standard 
MAC algorithm with the constraint model using all-different constraints, “smallest 
domain first” variable selection, and “minimal value first” value selection. We used a 
time limit of 2 minutes to solve each problem (there are some very hard instances that 
would prevent finishing experiments in a reasonable time if timeout is not used). 
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Fig. 9. The relative number of solved problems for the quasigroup problems of order 30 
( : QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new) 

Figure 9 shows a relative number of solved instances as a function of filling ratio. 
As we can see most of the generated problems are solvable within the 2 minutes time-
out but there are some instances around 62% that were not solved. This is a first indi-
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cation where the hard problems might settle but it does not show yet how hard the 
problems are. No problem is generated by QCP-orig for filling rations above 72% and 
hence no problem is solved there. 

We compare hardness of the generated problems by measuring runtime of the abo-
ve described straightforward solver when solving the problems generated by the stud-
ied generators. Figure 10 shows median runtime to solve the generated problems. By 
solving the problem we understand finding a completion of the partial Latin square or 
proving that no completion exists. This experiment brought some surprising results. 
First, the phase transition area is shifted for the QWH generators towards the area 
with a higher filling ratio (in comparison with the QCP generators). Second, the QCP-
alldiff generator produces the hardest to solve instances. This could be caused by 
using the all-different constraints both inside the QCP-alldiff generator and inside the 
solver, but we have no evidence of this (probably trying another solving approach 
might show whether the generated instances are hard in general). Finally, notice that 
the QCP-orig generator produced quite easy problems. We have observed the above 
mentioned features for Latin squares of other orders too. 
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Fig. 10. Median solution time in milliseconds (logarithmic scale) for the quasigroup problems 
of order 30 ( : QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new) 

As we already mentioned, it should be clear whether the generator produces satisfi-
able instances or not. Production of satisfiable instances is especially important when 
the problems are used to compare incomplete algorithms like local search techniques 
or incomplete depth-first search techniques [2]. In the next experiment we measured 
the number of satisfiable instances among the solved problems. Figure 11 shows the 
relative number of satisfiable instances for Latin squares of order 30 and different 
filling ratios. QWH generators are guaranteed to produce satisfiable instances; the 
experiment just confirmed this feature. Hence these generators are appropriate for 
providing instances to compare incomplete algorithms. The behavior of QCP-orig 
generator with satisfiable instances on one side and unsatisfiable instances on the 
other side has already been presented at [6]. However, taking in account Figure 9, we 
can deduce that no satisfiable instance is generated for larger filling ratios simply 
because no instance is generated there. Hence the conclusions in [6] are a bit mislead-
ing because the readers might expect that QCP-orig produces unsatisfiable instances 
for larger filling ratios which is not true in general (especially for higher order of 
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Latin squares). The number of satisfiable instances produced by QCP-alldiff is also 
decreasing around the phase transition area but it increases again for large filling 
ratios. Our other experiments (not presented here) showed that the area with a smaller 
number of satisfiable instances enlarges with increasing order of the Latin square. 
Nevertheless, QCP-alldiff might still be appropriate for generating problems used to 
compare complete algorithms. 
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Fig. 11. The relative number of satisfiable instance for the quasigroup problems of order 30 
( : QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new) 

In our last experiment, we tried to estimate how complicated the generated prob-
lems are if the constraint model with all-different constraints is used. In particular, we 
measured the number of cells that have a value after the all-different constraints are 
posted and propagated but before search is started. Mean values among the consistent 
problems are presented in Figure 12. The dashed line indicates the initial filling pro-
duced by generators so the curves above this line indicate that additional values are 
deduced by the initial constraint propagation using the all-different constraints. Notice 
that for the filling ratio smaller than 60%, no values for additional cells were deduced 
while for the filling ratio greater than 70%, the values of all the variables were  
set using constraint propagation (so no search is necessary to solve the problem).  We 
can see that the initial constraint propagation deduced more values for the problems 
produced by the QCP-all generator in comparison to the QWH generators. This is 
probably caused by using the all-different constraints during generation. Hence the 
QCP-alldiff produces instances with a larger number of pre-filled cells than requested. 
As proposed in [14] the intended filling can be achieved by measuring the total num-
ber of instantiated variables (including those instantiated through propagation) and 
stopping the generation process when this number is equal to the required filling. 
However, this technique makes the generator “less random” because some cells are 
filled by propagation rather than randomly. Moreover, this technique is not applicable 
to QWH generators that do not use propagation. If we use an assumption that stronger 
initial pruning means that the problems are easier for solving using the CP technology 
then the QWH generator produces harder problems in the phase transition area. This 
fits our observation from Figure 10, but recall that the phase transition area is shifted 
to smaller filling ratios for QCP-alldiff. 
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Fig. 12. The relative number of pre-filled cells using all-different constraints for the quasigroup 
problems of order 30 ( : QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new) 

5.2   Generator Efficiency 

Sometimes the generators of benchmark problems run off-line so they produce prob-
lems that are put into benchmark libraries. Nevertheless, in case of random samples of 
problems, the generators are frequently used on-line to generate problems that are 
used immediately to test the solvers. In this second case, it is desirable for the genera-
tor to be fast (the users do not want to waste time by generating the problems). 

We measured the runtime of studied generators to show how appropriate the gen-
erators are for on-line experiments. Figure 13 shows the runtime as a function of the 
filling ratio and Figure 14 shows the runtime as a function of the order of a Latin 
square. Visibly the better quality of the QCP-alldiff generator is paid-off by longer 
runtime. Moreover, the runtime of the QCP-alldiff generator increases faster than the 
runtime for the new QWH generator and from the order 50, it is actually slower. Con-
sequently, the QCP-alldiff generator pays-off only for smaller order of the Latin squa-
re which also takes in account our discussion from the previous section. Recall that 
QCP-alldiff seems to produce the hardest to solve instances (Figure 10) so we believe 
that this generator is still appropriate for comparing complete solving techniques. 
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Fig. 13. The time (in milliseconds) to generate a quasigroup problem of order 30 and variable 
filling ( : QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new) 
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Despite the fact that the original QCP generator is very fast, we do not recommend its 
usage simply because it produces less problem instances and the generated problem 
instances are order of magnitude easier to solve (Figure 10) in comparison to other 
presented generators. The runtime of QWH generators is slower than the original 
QCP generator, but recall that all instances produced by the QWH generators are 
satisfiable, which makes the QWH generators the only choice for testing incomplete 
solving techniques. Notice also that the reformulated QWH generator is about two 
times faster than the original QWH generator. 

Figure 14 compares the runtimes of the generators on problems with a fixed filling 
ratio 0.6 and with changing order of a Latin square. We have selected the filing ratio 
0.6 because it is within the phase transition region, however, we performed experi-
ments with other filling ratios and the results were similar. 
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Fig. 14. The time (in milliseconds, a logarithmic scale) to generate a quasigroup problem with 
the filling ratio 0.6 ( : QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new) 

6   Conclusions 

Completion of a partial Latin square is an interesting problem whose structure is close 
to real-life problems [7,10]. It is also a non-trivial problem [4] whose solving requires 
sophisticated techniques [5,8]. Finally, it is a problem whose instances can be gener-
ated randomly as a Quasigroup Completion Problem (QCP) [6] or Quasigroups With 
Holes (QWH) [1]. These features make the completion of partial Latin squares an 
ideal candidate for benchmarking constraint satisfaction techniques. In this paper, we 
studied the generators for both QCP and QWH and we provided detailed guidelines 
how to construct such generators. This alone is an important contribution because 
writing the generator for QWH is a non-trivial problem. Moreover, as far as we know 
this is the first paper in the CSP literature giving the exact description of the generator 
for QWH. We experimentally compared the existing generators and we proposed a 
reformulated version of the QWH generator that is much faster than the original gen-
erator. Even if the QWH generators are slower than the original QCP generator, their 
quality measured as a number of produced satisfiable instances is much higher. 
Hence, the QWH generators are appropriate to prepare problem instances for testing 
incomplete algorithms like in [2] while the QCP generators may still be useful for 
testing complete algorithms like in [12]. 
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